

ООО «Теплосила ВК»

МОДУЛЬ УПРАВЛЕНИЯ МНОГОФУНКЦИОНАЛЬНЫЙ TTR-01D

Приложение 01. Часть 2 (исполнение для узла подпитки в системе отопления)

Руководство по эксплуатации

TEPK. 421232.001-04 P3

Версия ПО: TTR01D01_v0312

Содержание

1 Назначение и область применения	3
2 Технические данные и характеристики	4
3 Комплектность	
4 Указание мер безопасности	5
5 Конструкция и принцип работы	5
6 Индикация информационых параметров	7
7 Подготовка к работе	10
8 Порядок работы	18
9 Техническое обслуживание	18
10 Порядок установки и монтажа	19
11 Возможные неисправности способы их устранения	21
12 Правила хранения и транспортирования	22
Приложение А Условное обозначение при заказе	23
Приложение Б Общий вид и габаритные размеры	23
Приложение В Схема электрическая подключений	24
Приложение Г Примеры схем применения в системах теплоснабжения	26

ВНИМАНИЕ: ПЕРЕД УСТАНОВКОЙ И ВКЛЮЧЕНИЕМ МОДУЛЯ УПРАВЛЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО TTR ВНИМАТЕЛЬНО ИЗУЧИТЕ НАСТОЯЩЕЕ РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ И ПАСПОРТ.

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ УСТАНОВКА МОДУЛЯ УПРАВЛЕНИЯ МНОГО-ФУНКЦИОНАЛЬНОГО ТТК ВО ВЗРЫВООПАСНЫХ ПОМЕЩЕНИЯХ.

Монтаж электрических цепей должен производиться в соответствии с электрической схемой подключения.

Ремонт могут производить только работники, имеющие разрешение изготовителя.

Изготовитель оставляет за собой право вносить незначительные изменения в схему и конструкцию прибора, не влияющие на работу и технические характеристики изделия.

СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

ЖКИ - жидкокристаллический индикатор;

исполнительный механизм (клапан подпитки, насос);

НСО - независимая система отопления;ПК - персональный компьютер (ПЭВМ);

СО - система отопления;

TTR - модуль управления многофункциональный TTR;

ЭКМ - электроконтактный манометр.

Настоящее руководство по эксплуатации содержит сведения и правила по эксплуатации модуля управления многофункционального модификации TTR-01D-230, предназначенного для работы в узле подпитки системы отопления.

Условное обозначение модуля управления многофункционального TTR (далее – TTR, модуль управления) при заказе и в документации другой продукции, в которых он может быть применен, приведено в приложении А.

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Модуль управления TTR — является микропроцессорным с символьно-цифровой индикацией изделием, программируемым потребителем, и предназначен для автоматического управления узлом подпитки в одноконтурной или двухконтурной независимой системе отопления.

Возможно использование модуля управления в составе автоматизированных и контрольно-измерительных систем через встроенный интерфейс связи RS-485.

1.2 Модуль управления TTR в узле подпитки одноконтурной независимой системе отопления обеспечивает управление одним двухпозиционным клапаном и работу до двух насосов в группе "основной + резервный".

В узле подпитки двухконтурной независимой системе отопления TTR обеспечивает управление двумя двухпозиционными клапанами и работу до двух насосов в группе "основной + резервный".

- 1.3 В зависимости от объекта регулирования TTR позволяет реализовать следующие функции:
- возможность управления подпиткой по датчику-реле давления или электроконтактному манометру;
 - задержка включения насоса на заданное время;
 - ограничение длительности работы насоса на заданное время;
 - защиту работы насосов при отсутствии теплоносителя;
 - автоматический ввод резервного насоса в случае неисправности основного;
 - попеременная работа насосов с целью обеспечения равномерного износа;
 - учёт времени наработки насосов.
- 1.4 Модуль управления обеспечивает диагностику наличия аварийной (нештатной) ситуации и неисправности устройства с отображением их причины на экране ЖКИ и включением аварийного режима на индикаторе, расположенном на передней панели прибора.
 - 1.5 Классификация TTR по ГОСТ 12997-84 и ГОСТ Р 52931-2008:
 - по эксплуатационной законченности является изделием второго порядка;
 - предназначено для информационной связи с другими изделиями;
- по устойчивости к воздействию температуры и влажности окружающего воздуха относится к группе исполнения В4 и предназначено для установки в закрытых помещениях с температурой воздуха от плюс 5 до плюс 50 °C, относительной влажностью 80 % при плюс 35 °C и более низких температурах без конденсации влаги;
 - по устойчивости к механическим воздействиям относится к группе исполнения L3;
- по метрологическим свойствам относятся к изделиям, которые не являются средствами измерения и не имеют точностные характеристики;
- по устойчивости к атмосферному давлению соответствует группе исполнения P1 и обеспечивает работу при атмосферном давлении от 84 до 106,7 кПа.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

2.1 Основные технические данные и характеристики приведены в таблице 1.

Таблица 1

Наименование параметра	Значение
Напряжение питания:	230 ⁺²³ ₋₃₅ В, частота (50 ±1) Гц
Потребляемая мощность, не более	3 BA
Тип клапана подпитки	двухпозиционный
Количество подключаемых насосов	2 ("основной"+"резервный")
Защита работы насосов от "сухого хода"	Есть
Количество выходов управления (реле)	4
Параметры релейного выхода	250 VAC, 2 A (cos φ=0,6)
Количество дискретных входов	4
Параметры дискретного входа (тип)	"сухой контакт"
Тип датчика "сухого хода"	ДР-Д, ЭКМ исп.1 по ГОСТ 2405-88
Тип датчика неисправности насосов	датчик-реле перепада давления ДР-ДД
Тип датчика давления узла подпитки	ДР-Д, ЭКМ исп.5 по ГОСТ 2405-88
Глубина почасового архива, записей	896
Тип интерфейса и протокол связи	RS-485, Modbus-RTU
Скорость обмена, бит/с	2400115200
Степень защиты корпуса	IP40 (IP20 – со стороны винтовых клемм)
Габаритные размеры, мм	91 x 71 x 66
Масса кг, не более	0,35
Средний срок службы, не менее	12 лет

3 КОМПЛЕКТНОСТЬ

3.1 Комплектность должна соответствовать таблице 2.

Таблица 2

Наименование	Количество
Модуль управления многофункциональный TTR, шт.	1
Руководство по эксплуатации, экз.	1*
Паспорт, экз.	1
Упаковка, шт	1

^{*} Допускается поставлять один экземпляр руководства по эксплуатации на 5 изделий при поставке в один адрес.

4 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

4.1 Конструкция TTR соответствует классу защиты II по ГОСТ12.2.007.0-75.

По эксплуатационной законченности модуль управления является изделием второго порядка, т.е. относится к изделиям, которые необходимо размещать внутри изделия третьего порядка по ГОСТ Р 52931-2008 при эксплуатации.

- 4.2 При эксплуатации и техническом обслуживании модуля управления необходимо соблюдать меры предосторожности в соответствии с правилами безопасности, установленными для данного помещения или объекта, а также руководствоваться ТКП 181-2009 "Правила технической эксплуатации электроустановок потребителей" и ТКП 427-2022 "Электроустановки. Правила по обеспечению безопасности при эксплуатации".
- 4.3 Безопасность эксплуатации TTR обеспечивается выполнением требований и рекомендаций настоящего руководства по эксплуатации и паспорта. В случае нарушения правил эксплуатации может ухудшиться защита, применённая в изделии.

5 КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ

5.1 Конструкция

5.1.1 Конструктивно TTR выполнен в корпусе для крепления на DIN-рейку 35 мм. На лицевой поверхности корпуса расположены ЖКИ, индикатор режима работы и кнопки управления. Внешний вид передней панели приведён на рисунке 1.

Рисунок 1 - Внешний вид панели индикации и управления

Возможные состояния индикатора «Режим» приведены в таблице 3.

Таблица 3

Состояние индикатора «Режим»	Состояние работы TTR
Мигает зелёным цветом	Нормальный режим работы
Горит постоянно зелёным цветом	Работа остановлена - режим «Выкл»
Мигает красным цветом	Нештатная ситуация в системе управления
Горит постоянно красным цветом	Аппаратная неисправность TTR

Назначение кнопок управления приведено в таблице 4.

Таблица 4

Кнопка	Функциональное назначение	
«▼ »	Кнопка выхода в предыдущее меню, отмена операции	
« ↓ »	Кнопка перебора вертикального меню, изменение значения «-»	
« ↑ »	Кнопка перебора горизонтального меню, изменение значения «+»	
«≠ »	Кнопка выбора пункта меню, ввод значения	

5.2 Принцип работы

- 5.2.1 Основой TTR является однокристальный микроконтроллер, который организует работу всего прибора измеряет входные сигналы, поступающие от внешних датчиков, производит расчёты, выводит полученные значения параметров на ЖКИ и, согласно с программой, вырабатывает сигналы управления исполнительными механизмами.
 - 5.2.2 Диаграмма работы TTR по управлению узлом подпитки приведена на рисунке 2.

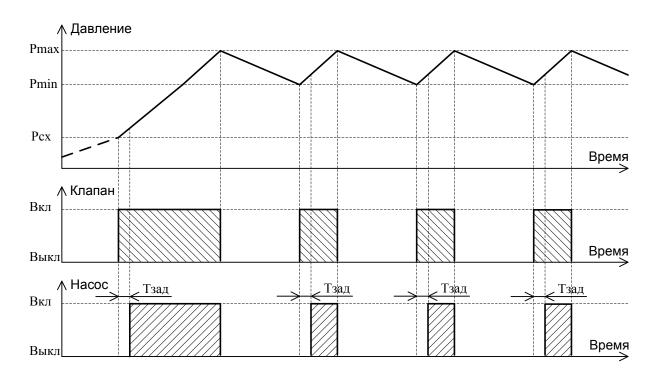


Рисунок 2 – Диаграмма работы по управлению подпиткой

Модуль управления TTR начинает свою работу с опроса состояния датчика наличия теплоносителя в системе. В случае наличия давления в системе и при условии Pcx<P<Pmax, TTR включает вначале клапан подпитки и через заданный период **Тзад**, длительность которого может быть запрограммирована пользователем, включает насос.

При достижении максимального уровня давления Pmax модуль управления TTR производит выключение насоса и клапана подпитки. Далее, при достижение давления низкого уровня Pmin, процесс включения клапана подпитки и насоса повторяется.

Алгоритмом работы программы в модуле TTR предусмотрена функция попеременной работа насосов с целью равномерного износа, переключение на работу резервного насоса в случае неисправности работающего насоса по датчику неисправности и/или по времени ограничения работы насоса **Тогр**, длительность которого может быть запрограммирована пользователем.

6 ИНДИКАЦИЯ ИНФОРМАЦИОННЫХ ПАРАМЕТРОВ

6.1 Индикация информационных параметров выводится на ЖКИ. Общий вид структуры пользовательского меню приведён на рисунке 3.

По назначению пользовательское меню прибора условно разделено на уровни – ВЕРХНИЙ и НИЖНИЙ.

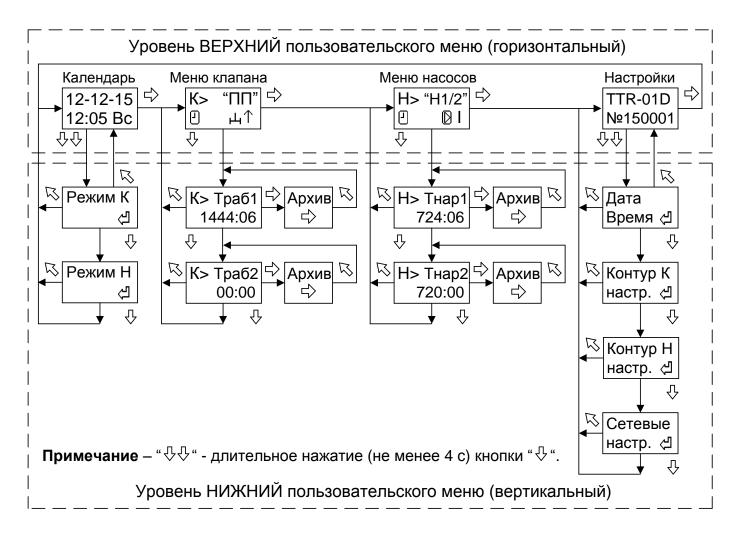
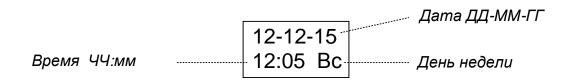
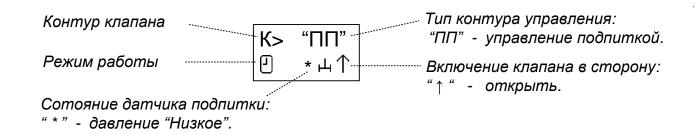
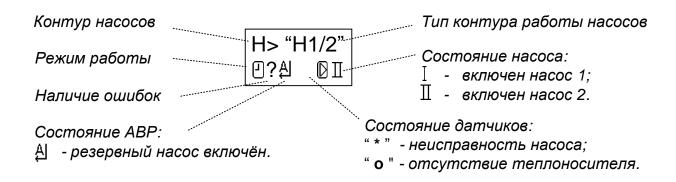



Рисунок 3 – Общая структура пользовательского меню

6.2 Уровень меню ВЕРХНИЙ


- 6.2.1 Уровень меню ВЕРХНИЙ предназначен для индикации окон меню календаря реального времени, состояния контуров и настройки. Переход между окнами меню в пределах данного уровня возможен по нажатию кнопки "➡" и организован по циклу.
 - 6.2.2 Внешний вид окна просмотра календаря реального времени приведён ниже.

Переход на уровень НИЖНИЙ для установки режимов работы клапана и насосов производится при длительном (не менее 4 с) нажатии кнопки "♣" (подробнее см. 7.6).



6.2.3 Внешний вид окна просмотра меню контура управления клапаном приведён ниже.

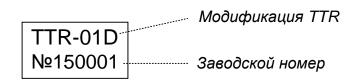
Режим работы контура управления клапаном может принимать следующие значения:

- работа контура остановлена (режим "Останов");
- □ работа контура в автоматическом режиме (режим "Программа").
- 6.2.4 Внешний вид окна меню контура управления насосами приведён ниже.

Тип контура управления насосами может принимать следующие значения:

"ВЫКЛ" – управление насосами выключено;

"H1" – рабо


– работа насоса 1;

"H2" – работа насоса 2;

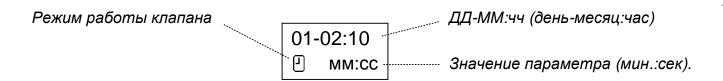
"Н1/2" – попеременная работа насоса 1 и насоса 2.

Режим работы контура управления насосами может быть следующим:

- работа контура остановлена (режим "Останов");
- работа контура в автоматическом режиме (режим "Программа").
- 6.2.3 Внешний вид окна просмотра модификации и заводского номера TTR приведён ниже.

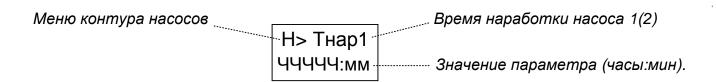
Переход на уровень НИЖНИЙ для установки календаря реального времени и настройки параметров управления производится при длительном (не менее 4 с) нажатии кнопки "♣" (подробнее смотри 7.2...7.5).

6.3 Уровень меню НИЖНИЙ


6.3.1 Уровень меню НИЖНИЙ предназначен для задания режима работы контура, вывода на ЖКИ времени наработки клапана и насосов, их почасового архива работы, установки календаря и программирования адреса прибора в сети RS485, а также настройки параметров контура.

Переход между окнами меню в пределах данного уровня возможен по нажатию кнопки "♣" и организован по циклу. Возврат в исходное окно меню уровня ВЕРХНИЙ производится при нажатии кнопки "♣".

6.3.2 Внешний вид окна ЖКИ времени работы клапана приведён ниже.



Внешний вид окна ЖКИ почасового архива работы клапана приведён ниже.

Перемещение по архиву производится при нажатии кнопки "➡", выход с переходом в меню следующего параметра — при нажатия кнопки "➡", без перехода — при нажатии кнопки "➡".

6.3.3 Внешний вид окна ЖКИ времени наработки насосов приведён ниже.

Внешний вид окна ЖКИ почасового архива работы насоса приведён ниже.

" о " - отсутствие теплоносителя.

Перемещение по архиву производится при нажатии кнопки "➡", выход с переходом в меню следующего параметра — при нажатия кнопки "➡", без перехода — при нажатии кнопки "➡".

7 ПОДГОТОВКА К РАБОТЕ

7.1 Общие положения

При подготовке к работе необходимо подключить модуль управления к напряжению питания сети в соответствии со схемой подключения, приведенной в приложении В, и выполнить последовательно операции по настройке, приведенные в 7.2 – 7.6.

7.2 Программирование часов реального времени и даты

Модуль управления TTR имеет встроенные часы реального времени. При подготовке к работе следует проверить правильность установки часов и календаря.

Для корректировки необходимо согласно рисунку 3 войти в меню **«Дата Время»**. Выбор корректируемого параметра производится с помощью нажатия кнопки "➡", а изменение его значения - с помощью нажатия кнопки "♣".

Выход из меню с сохранением в памяти устройства установленной даты и времени производится при нажатии кнопки "◄", без сохранения с восстановлением прежнего значения – при нажатии кнопки "▼".

7.3 Программирование параметров контура управления клапаном

7.3.1 Для просмотра (программирования) параметров контура управления клапаном необходимо войти согласно рисунку 4 в меню **«Контур К настр.»**.

Структура пользовательского меню настройки параметров контура управления клапаном подпитки приведена ниже.

Рисунок 4 – Структура меню настройки параметров контура клапана подпитки

7.3.2 Вход в меню просмотр-установка параметра производится при нажатии кнопки "◄". Изменение параметра (мигает) производится с помощью кнопок "➡" (+) или "♣" (-).

Выход из меню с сохранением установленного значения параметра производится при нажатии кнопки "◄", без сохранения с восстановлением прежнего значения – при нажатии кнопки "►".

- 7.4 Программирование параметров контура управления насосами
- 7.4.1 Общая структура меню настройки параметров контура управления насосами приведена на рисунке 5. Для просмотра или программирования параметров контура управления насосом необходимо войти в меню «Контур Н настр.».

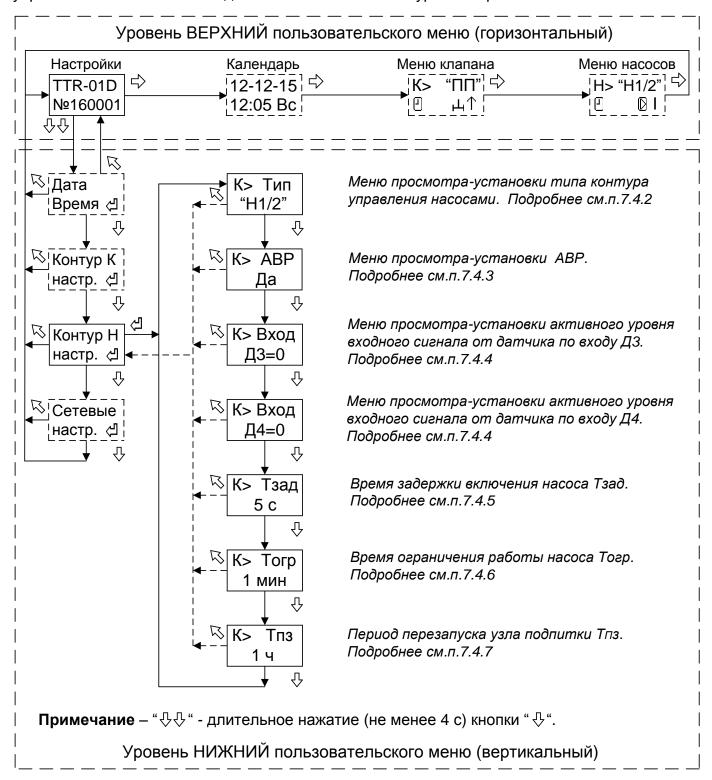


Рисунок 5 – Структура меню настройки параметров контура управления насосами

7.4.2 Тип контура управления насосами может принимать значения, список которых и соответствующий им алгоритм работы приведён в таблице 5.

Таблица 5

Тип	Описание работы
Выкл	Управление насосами выключено.
"H1"	Работа насоса 1. Включена защита от отсутствия теплоносителя по сигналу на входе "Д3". В случае установки параметра "АВР"=Да ввод в работу резервного насоса 2 производится при разомкнутом ("Вход Д4"=1) или замкнутом ("Вход Д4"=0) контакте на входе "Д4".
"H2"	Работа насоса 2. Включена защита от отсутствия теплоносителя по сигналу на входе "Д3". В случае установки параметра "АВР"=Да ввод в работу резервного насоса 1 производится при разомкнутом ("Вход Д4"=1) или замкнутом ("Вход Д4"=0) контакте на входе "Д4".
"H1/2"	Попеременная работа насоса 1 и насоса 2 (через неделю). Включена защита от отсутствия теплоносителя по сигналу на входе "Д3". При установке параметра "АВР"=Да и наличия на входе "Д4" сигнала неисправности в работе насоса производится ввод в работу резервного насоса.
Примечание – Установка активного уровня (0 или 1) сигнала неисправности насоса по входу Д4 производится программированием параметра "Вход Д4" (смотри 7.4.4).	

Вход в меню просмотр-установка параметра производится при нажатии кнопки "♣". Изменение параметра (мигает) производится с помощью нажатий кнопок "♣" (+) или "♣" (-). Выход из меню с сохранением значения параметра производится при нажатии кнопки

"

«

«

«

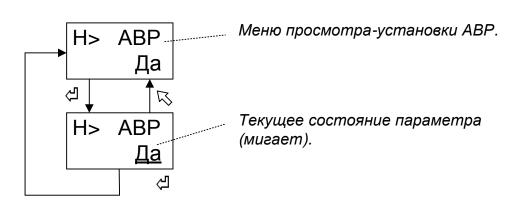
«

», без сохранения с восстановлением прежнего значения

— при нажатии кнопки

«

»

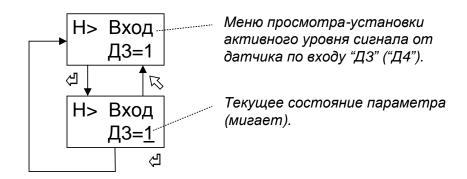

«

»

».

7.4.3 Вход в меню просмотра-установки параметра **ABP** (автоматический ввод в работу резервного насоса в случае неисправности основного) производится при нажатии кнопки "♣" (см. рисунок 5).

Внешний вид окна меню приведён ниже.


Изменение значения параметра (мигает) производится с помощью нажатий кнопок "➡" (+) или "♣" (-).

При установке параметра "ABP"=Да в случае неисправности в работе основного насоса производится ввод в работу резервного насоса. При сбросе параметра "ABP"=Нет не производится опрос состояния датчика Д4 неисправности насоса.

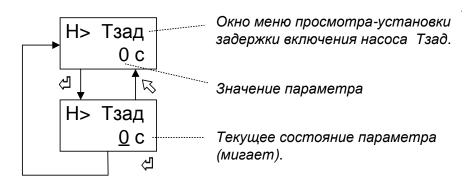
Сохранение в памяти TTR установленного значения параметра производится при нажатии кнопки "♣", без сохранения с восстановлением прежнего значения – при нажатии кнопки "♣".

7.4.4 Вход в меню просмотра-установки параметра активного уровня входного сигнала от датчиков по дискретным входам Д3 и Д4 производится при нажатии кнопки "♣". Внешний вид окна меню приведён ниже.

Изменение значения параметра (мигает) производится с помощью нажатий кнопок "➡" (+) или "♣" (-).

Параметр может принимать два значения соответственно «0» - активный уровень входного сигнала «низкий» (вход замкнут) или «1» - активный уровень входного сигнала «высокий» (вход разомкнут).

Сохранение в памяти TTR значения параметра производится при нажатии кнопки "♣", без сохранения с восстановлением прежнего значения – при нажатии кнопки "♣".


Примеры:

- 1 При установке параметре "Вход Д3"=1 и разомкнутом контакте на входе "Д3" включается защита насосов от "сухого хода".
- 2 При установке параметре "Вход Д4"=0 замкнутый контакт на входе "Д4" соответствует неисправному состоянию насоса и при установке параметра "АВР"=Да производится включение резервного насоса.

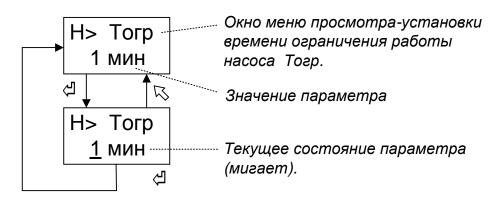
Примечания

- 1 Заводская установка: «Вход Д3»=0, «Вход Д4»=0.
- 2 В модуле управления ТТР предусмотрена программная задержка срабатывания по уровню входного сигнала, позволяющая ТТР, не отрабатывать случайные скачкообразные сигналы на входах "Д3" и "Д4". Время задержки срабатывания по входу "Д3" и "Д4" составляет соответственно 3 с и 20 с.
- 7.4.5 Вход в меню просмотра-установки параметра времени задержки включения насоса **Тзад** производится при нажатии кнопки "♣" (см. рисунок 5).

Внешний вид окна меню приведён ниже.

Изменение значения параметра (мигает) производится с помощью нажатий кнопок "➡" (+) или "➡" (-). Диапазон изменения параметра (0...60) с.

Сохранение в памяти TTR значения параметра производится при нажатии кнопки "♣", без сохранения с восстановлением прежнего значения – при нажатии кнопки "♣".

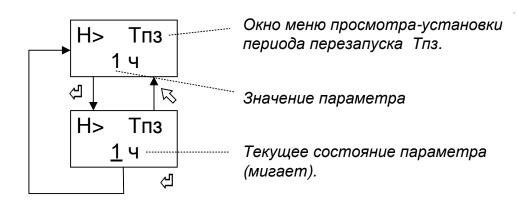

7.4.6 Вход в меню просмотра-установки параметра времени ограничения работы насоса **Тогр** производится при нажатии кнопки "**◄**" (см. рисунок 5).

Параметр устанавливает время продолжительности включённого состояния насоса после замыкания контакта "Низкое давление".

В случае установки параметра "ABP"=Нет и при отсутствии поднятия давления в узле подпитки по истечении времени Тогр производится выключение насоса и клапана подпитки с выводом на ЖКИ сообщения неисправность насоса "X" (авария подпитки) и мигающего красным цветом индикатора "Режим".

В случае установки параметра "ABP"=Да и при отсутствии поднятия давления в узле подпитки по истечении времени Тогр производится выключение основного насоса и включения резервного насоса. Если по истечении времени Тогр давление в узле подпитки не поднимется, производится выключение резервного насоса и клапана подпитки с выводом на ЖКИ сообщения неисправности насосов "X" (авария подпитки) и мигающего красным цветом индикатора "Режим".

Внешний вид окна меню приведён ниже.



Изменение значения параметра (мигает) производится с помощью нажатий кнопок "➡" (+) или "➡" (-). Диапазон изменения параметра (Выкл, 1…60) минут.

Сохранение в памяти TTR значения параметра производится при нажатии кнопки "♣", без сохранения с восстановлением прежнего значения – при нажатии кнопки "♣".

7.4.7 Вход в меню просмотра-установки параметра периода перезапуска узла подпитки **Тпз** производится при нажатии кнопки "◀" (см. рисунок 5).

Установка параметра Тпз позволяет перезапустить управление подпиткой в случае аварии подпитки (смотри 7.4.6). Внешний вид окна меню приведён ниже.

Изменение значения параметра (мигает) производится с помощью нажатий кнопок "➡" (+) или "➡" (-). Диапазон изменения параметра (Выкл, 1...24) ч.

Сохранение в памяти TTR значения параметра производится при нажатии кнопки "♣", без сохранения с восстановлением прежнего значения – при нажатии кнопки "♣".

- 7.5 Программирование сетевых настроек
- 7.5.1 При подготовке TTR к работе в сети интерфейса RS485 следует проверить и при необходимости установить сетевые настройки адрес в сети и скорость обмена. Для этого необходимо войти в меню **«Сетевые настр.»** (см. рисунок 6).

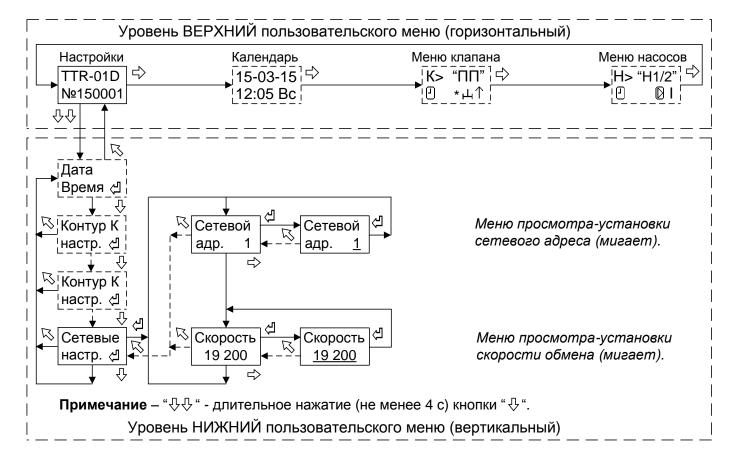


Рисунок 6 – Структура меню настройки сетевых параметров

Изменение значения параметра (мигает) производится с помощью нажатий кнопок " →" (+) или " →" (-).

Изменение сетевого адреса организовано по циклу от 1 до 246.

Изменение скорости обмена организовано по циклу и может принимать следующие значения: 2400, 9600, 19200, 115200 бит/с.

Сохранение в TTR значения параметра производится при нажатии кнопки "◀", без сохранения с восстановлением прежнего значения – при нажатии кнопки "馬".

- 7.6 Изменение режима работы контура
- 7.6.1 Для изменения режима работы контура управления клапаном или контура управления насосами необходимо войти в соответствующее меню согласно рисунка 7.
- 7.6.2 Режим работы контура управления клапаном может принимать следующие значения:
 - работа контура остановлена (режим "Останов");
 - □ работа контура в автоматическом режиме (режим "Программа");
 - ↑ работа контура в режиме "Ручной".

Выбор режима производится перемещением курсора при нажатии кнопки "". Курсор выбранного режима мигает.

Сохранение в TTR значения параметра производится при нажатии кнопки "◀", без сохранения с восстановлением прежнего значения – при нажатии кнопки "▼".

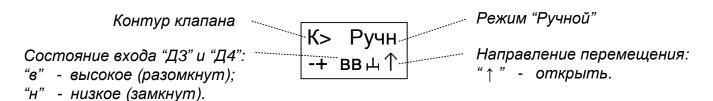


Рисунок 7 – Структура меню настройки режима работы контура

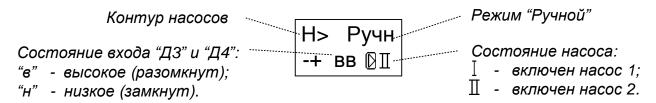
7.6.3 При выборе режима работы "**Ручной**" появляется дополнительное окно меню для проверки работы клапанов (релейных выходов TTR) и дискретных входов для подключения датчиков давления ("Д1" и "Д2").

Внешний вид окна меню в режиме "Ручной" приведён ниже.

При нажатии и удержании кнопки "-" или "+" производится включение соответственно клапана 1 или 2.

При нажатии кнопки "▼" происходит выход из режима "Ручной" с установкой режима работы контура управления клапаном "Останов".

- 7.6.4 Режим работы контура управления насосами может принимать следующие значения:
 - работа контура остановлена (режим "Останов");
 - □ работа контура в автоматическом режиме (режим "Программа");
 - √ работа контура в режиме "Ручной".


Выбор режима производится перемещением курсора при нажатии кнопки "*". Курсор выбранного режима мигает.

Сохранение в TTR значения параметра производится при нажатии кнопки "◀", без сохранения с восстановлением прежнего значения – при нажатии кнопки "馬".

7.6.5 При выборе режима "**Ручной**" появляется дополнительное окно меню проверки работы насосов (релейных выходов TTR), датчика сухого хода (вход "Д3") и датчика неисправности насоса (вход "Д4").

Внешний вид окна меню в режиме "Ручной" приведён ниже.

При нажатии и удержании кнопки "-" или "+" производится включение соответственно насоса 1 или насоса 2.

ВНИМАНИЕ: ЗАЩИТА НАСОСОВ В РЕЖИМЕ "РУЧНОЙ" ОТКЛЮЧЕНА.

При нажатии кнопки "►" происходит выход из режима "Ручной" с установкой режима работы контура управления насосами "Останов".

8 ПОРЯДОК РАБОТЫ

- 8.1 Работу с модулем управления TTR проводить в следующем порядке:
- 1) Произвести подключение TTR в соответствии с требованиями разделов 4 и 10.
- 2) Включить питание.

При включении на ЖКИ в течении 3 секунд выводится информация о модификации устройства и версия программного обеспечения.

Далее после самотестирования модуль управления переходит в режимы работы, установленные пользователем согласно 7.6.

Зелёный цвет индикатора **«Режим»** соответствует нормальной работе устройства и отсутствию аварийных (нештатных) ситуаций. При этом, мигание индикатора соответствует автоматическому режиму работы контура (режим "Программа"), а отсутствие мигания индикатора – режиму "Останов".

ВНИМАНИЕ: ПРИ ЗАПОЛНЕНИИ СИСТЕМЫ ОТОПЛЕНИЯ ТЕПЛОНОСИТЕ-ЛЕМ БЕЗ УЧАСТИЯ НАСОСА ПОДПИТКИ НЕОБХОДИМО УСТАНОВИТЬ РЕЖИМ РАБОТЫ КОНТУРА НАСОСОВ "ОСТАНОВ" (см. 7.6)

3) Произвести настройку конфигурации, установку параметров TTR и режима работы контуров (см. 7.1...7.7).

ВНИМАНИЕ: РЕКОМЕНДУЕТСЯ ИЗМЕНЕНИЕ ПАРАМЕТРОВ УПРАВЛЕНИЯ НАСОСАМИ ПРОИЗВОДИТЬ В РЕЖИМЕ "ВЫКЛ" ИЛИ ПРИ ВЫКЛЮЧЕННОМ ЭЛЕКТРОПИТАНИИ НАСОСОВ.

- 4) При проведении пусконаладочных работ рекомендуется провести проверку работы клапана и насосов в режиме **«Ручной»** (см. 7.6).
 - 5) При необходимости изменения каких-либо настроек работы контуров произвести перепрограммирование параметров TTR согласно разделу 7.

9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 9.1 Техническое обслуживание проводится с целью обеспечения нормального функционирования устройства и сохранения его характеристик в течение всего срока эксплуатации.
- 9.2 Периодичность работ по техническому обслуживанию устанавливается потребителем, но не реже одного раза в год.

В комплекс профилактических работ по техническому обслуживанию входят:

- внешний осмотр устройства, удаление пыли, следов влаги;
- проверка состояния внешних подключений;
- проверка работоспособности.

10 ПОРЯДОК УСТАНОВКИ И МОНТАЖА

10.1 Установка TTR

10.1.1 Монтаж и установка TTR должны производиться квалифицированным персоналом в строгом соответствии с требованиями настоящего руководства по эксплуатации и утверждённого проекта.

Не допускается установка TTR имеющих видимые механические повреждения и нарушение заводских пломб.

10.1.2 Модуль управления устанавливают на DIN-рейку 35 мм в вертикальном положении в месте, обеспечивающем хороший доступ при монтаже электрических кабелей, а также для дальнейшей эксплуатации и обслуживании.

По эксплуатационной законченности TTR является изделием второго порядка, т.е. относится к изделиям, которые необходимо размещать внутри изделия третьего порядка по ГОСТ Р 52931-2008 (при эксплуатации – в защитном корпусе, шкафах и т.п.)

10.2 Подключение датчиков для управления насосами

10.2.1 В качестве датчика для защиты работы от отсутствия теплоносителя применяют датчики-реле давления типа ДР-Д или электроконтактный манометр ЭКМ исполнения 1 по ГОСТ 2405-88.

Для контроля неисправности в работе насосов применяют датчики-реле перепада давления типа ДР-ДД или аналогичные по характеристикам.

В качестве датчика давления узла подпитки применяют датчики-реле давления типа ДР-Д. Для узла подпитки одноконтурной независимой системы отопления допускается применение электроконтактного манометра ЭКМ исполнения 5 по ГОСТ 2405-88.

Датчики подключаются к TTR (смотри приложение B) любым кабелем с сечением жилы не более 1 мм² и общей длиной не более 100 м.

Кабель прокладывать на расстоянии не ближе 0,1 м от силовых цепей (уменьшить расстояние можно только вблизи TTR при вводе кабеля).

При наличии мощных внешних источников помех и наводок кабель рекомендуется прокладывать в заземлённом металлорукаве или применять экранированный кабель.

Рекомендуемая марка экранированного кабеля — КМПВЭ 2x0,35 ТУ 16-705.169-80 или аналогичный по характеристикам.

10.3 Подключение интерфейса RS-485

10.3.1 Для организации внешнего мониторинга и управления работой в TTR предусмотрен интерфейс RS-485, схема подключения которого приведена в приложении В.

Описание протокола связи и демо-версия программы мониторинга работы TTR приведены на сайте: www.teplo-sila.com.

Рекомендуемые марки кабеля - КВП-5е 1x2x0,52 (внутри помещения) и КВПП-5е 1x2x0,52 (вне помещения) по ТУ 16.К99-014-2004.

10.4 Подключение клапана подпитки и насосов

10.4.1 Схемы электрические подключения клапанов подпитки и насосов к модулю управления приведены в приложении В.

Насосы должны подключаться к электросети через автоматический выключатель.

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ БЕЗ СОГЛАСОВАНИЯ С ПРЕДПРИЯТИЕМ-ИЗГОТОВИТЕЛЕМ В КАЧЕСТВЕ НАГРУЗКИ РЕЛЕЙНЫХ ВЫХОДОВ МОДУЛЯ УПРАВЛЕНИЯ ТТК ИСПОЛЬЗОВАТЬ ЕМКОСТНУЮ НАГРУЗКУ, НАПРИМЕР, ЭЛЕКТРИЧЕСКИЕ ЦЕПИ, СОДЕРЖАЩИЕ AC-DC, DC-DC ПРЕОБРАЗОВАТЕЛИ.

- 10.4.2 Для подключения можно применять любой в двойной изоляции силовой кабель или провод с сечением медной жилы (0,75-1,5) мм².
- 10.4.3 Насосы с потребляемой мощностью **более 300 ВА** должны подключаться к TTR через промежуточные силовые реле, контакторы или пускатели.
 - 10.5 Подключение питания
- 10.5.1 Схема электрическая подключения модуля управления TTR к электропитанию приведена в Приложении В.
- 10.5.2 TTR должен подключаться к электросети через автоматический выключатель, выбор которого определяется с учётом суммарной мощности подключаемых ИМ.
- 10.5.3 Для подключения электропитания TTR можно применять любой силовой кабель в двойной изоляции или провод с сечением медной жилы (0,75-1,5) мм².

ВНИМАНИЕ: МОДУЛЬ УПРАВЛЕНИЯ ТТК ИМЕЕТ ДВОЙНУЮ ИЗОЛЯЦИЮ ПО СЕТИ ПИТАНИЯ, ПОЭТОМУ ЗАЗЕМЛЕНИЕ ЭЛЕКТРОННОГО БЛОКА НЕ ТРЕБУЕТСЯ.

11 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

11.1 Перечень возможных неисправностей представлен в таблице 6.

Таблица 6

Наименование неисправности, внешнее проявление	Вероятная причина неисправности	Метод устранения
1. При включении напряжения сети – ЖКИ и	1. Отсутствует напряжение питания.	Проверить подключение и наличие напряжения питания.
индикатор "Режим" не светятся	2. Неисправен источник питания TTR.	Отремонтировать источник питания TTR*.
2. Прибор периодически перезагружается.	Параметры питания не отвечают требованиям 2.1.	Проверить параметры питания.
3. На ЖКИ выводится сообщение "Низкое	1. Напряжение питания ниже нормы.	Проверить напряжение питания.
питание".	2. Неисправность TTR.	Отремонтировать TTR*.
4. На ЖКИ в меню календаря выводится сообщение "⊕" .	Напряжение литиевого элемента ниже нормы.	Заменить литиевый. элемент*
5. Индикатор режим горит красным цветом постоянно и на ЖКИ	1.Сбой настроечных параметров.	Проверить и установить настроечные параметры (смотри 7.2-7.7).
выводится сообщение "ОШБ:XXXX", где XX- код.	2. Неисправность TTR.	Отремонтировать TTR*.
6. Индикатор режим	1. Отсутствует теплоноситель.	Проверить причину отсутствия теплоносителя.
мигает красным цветом и на ЖКИ в меню работы насоса выводятся сообщения о наличии	2. Неисправность (обрыв) датчика наличия теплоно- сителя по входу "ДЗ".	Проверить подключение. Отремонтировать датчик*.
ошибки "?" и отсутствия теплоносителя "о".	3. Неправильно установ- лен параметр уровня активного сигнала "Д3".	Правильно установить уровень активного сигнала по входу "ДЗ" (см. 7.4.4).
7 ** 14.15.44.07.00.004.44	1. Неисправность (обрыв) датчика по входу "Д4".	Проверить подключение. Отремонтировать датчик*.
7.** Индикатор режим мигает красным цветом и на ЖКИ в меню работы насоса выводится	2. Неправильно установ- лен параметр уровня активного сигнала "Д4".	Правильно установить уровень активного сигнала по входу "Д4" (см. 7.4.4).
сообщения наличия ошибки "?" и неисправности насоса "X".	3. Низкое значение параметра времени ограничения работы Тогр.	Увеличить (или выключить) параметр времени ограничения работы Тогр (см. 7.4.6)
nonenpathoem naccou X.	4.Неисправность в работе насосов.	Проверить работу насосов. Отремонтировать насос*.

Примечания

1 * Ремонтные работы выполняются на заводе-изготовителе или специализированном предприятии.

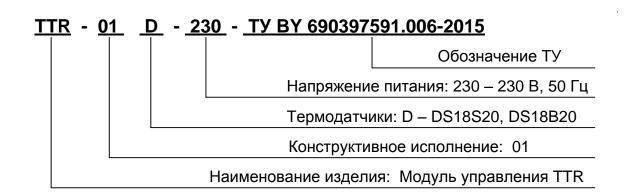
2** Сброс ошибки производится при установке режима контура насосов "Останов", а перезапуск цикла работы контура насосов - при последующей установке режима "Автоматический" (см. 7.6.4).

При установке параметра "**Tпз**" производится автоматический сброс ошибки и перезапуск цикла работы контура насосов через заданный интервал времени (см. 7.4.7).

12 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

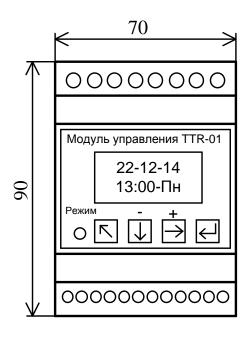
- 12.1 Модуль управления TTR следует хранить на стеллажах в сухом отапливаемом помещении при температуре от плюс 5 до плюс 40 °C, относительной влажности до 95 % при температуре плюс 35 °C.
- 12.2 TTR, упакованные в тару, транспортируют в закрытых транспортных средствах (закрытые автомашины, железнодорожные вагоны, трюмы судов) при следующих условиях по ГОСТ 12997-84:
 - -температура окружающего воздуха от минус 25 до плюс 50 °С;
 - -относительная влажность воздуха до (95 \pm 3) % при температуре 35 °C;
 - -вибрация по группе N1.

При транспортировании в самолете модуль управления размещают в герметизированном отапливаемом отсеке.


12.3 После транспортирования при отрицательных температурах вскрытие ящиков можно производить только после выдержки их в течение 24 часов в отапливаемом помещении.

ПРИЛОЖЕНИЕ А

(справочное)


Условное обозначение при заказе

ПРИЛОЖЕНИЕ Б

(справочное)

Общий вид и габаритные размеры

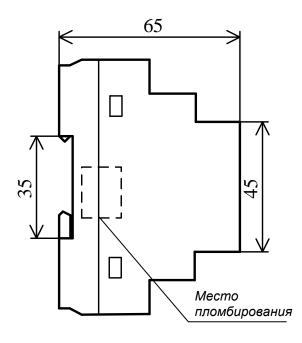


Рисунок Б.1 – Общий вид и габаритные размеры

ПРИЛОЖЕНИЕ В

(справочное)

Схема электрическая подключений

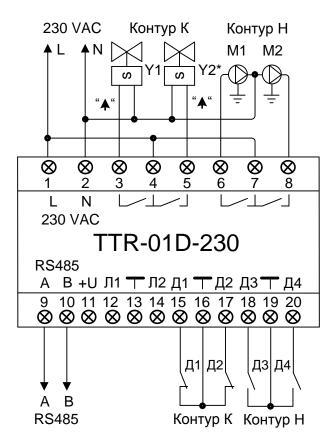


Рисунок В.1 – Схема электрическая подключений TTR-01D-230 при применении датчиков давления в узле подпитки типа "ДР-Д" или аналогичных по характеристикам.

Примечание – * Подключение клапана Y2 и датчика давления Д2 производится только для узла подпитки двухконтурной системы отопления (смотри Г.2).

Назначение контактов приведено в таблице В.1.

Таблица В.1

№ конт.	Назначение	№ конт.	Назначение
1	Питание 230 VAC, "L"	9	RS-485, "A"
2	Питание 230 VAC,"N"	10	RS-485, "B"
3	Клапан Ү1 - "ОТКРЫТЬ "	15	Датчик "<Р1" узла подпитки 1
4	Питание клапанов Y1 и Y2	16	"Общий"
5*	Клапан Ү2 - "ОТКРЫТЬ "*	17*	Датчик " <p2" 2<="" td="" подпитки="" узла=""></p2">
6	Hacoc M1	18**	Защита насосов от "сухого хода"
7	Питание насосов М1 и М2	19	"Общий"
8	Hacoc M2	20**	Неисправность в работе насоса

^{*} Подключение производится для узла подпитки двухконтурной системы отопления (смотри Г.2).

^{**} Активный уровень входного сигнала «0» (замкнут) или «1» (разомкнут) программируется пользователем согласно 7.4.4 на этапе пусконаладочных работ.

Схема электрическая подключений

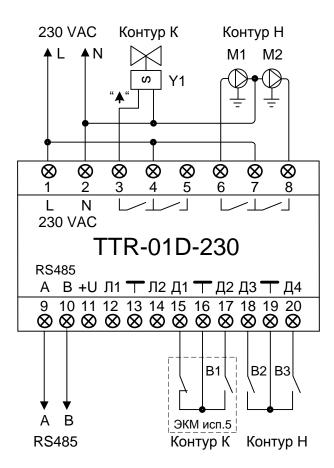


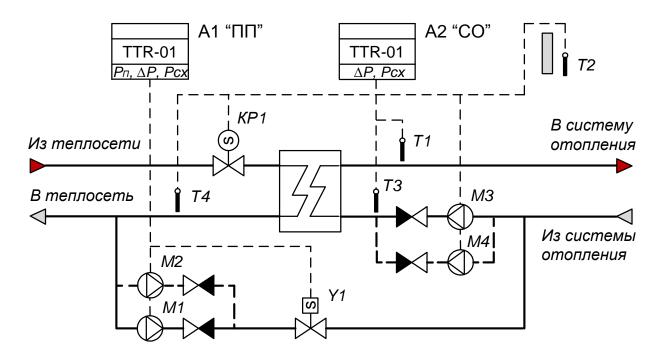
Рисунок В.2 — Схема электрическая подключений TTR-01D-230 при применении датчика давления в узле подпитки типа ЭКМ исполнения 5 по ГОСТ 2405-88.

Назначение контактов приведено в таблице В.2.

Таблица В.2

№ конт.	Назначение	№ конт.	Назначение
1	Питание 230 VAC, "L"	9	RS-485, "A"
2	Питание 230 VAC,"N"	10	RS-485, "B"
3	Клапан Ү1 - "ОТКРЫТЬ "	15	Датчик "<Р1" узла подпитки
4	Питание клапана Ү1	16	"Общий"
5		17	Датчик ">Р2" узла подпитки
6	Hacoc M1	18*	Защита насосов от "сухого хода"
7	Питание насосов M1 и M2	19	"Общий"
8	Hacoc M2	20*	Неисправность в работе насоса

^{*}Активный уровень входного сигнала от датчика «0» (замкнут) или «1» (разомкнут) программируется пользователем согласно 7.4.4 на этапе пусконаладочных работ.



ПРИЛОЖЕНИЕ Г

(справочное)

Примеры схем применения в системах теплоснабжения

Г.1 Одноконтурная независимая система отопления с узлом подпитки.

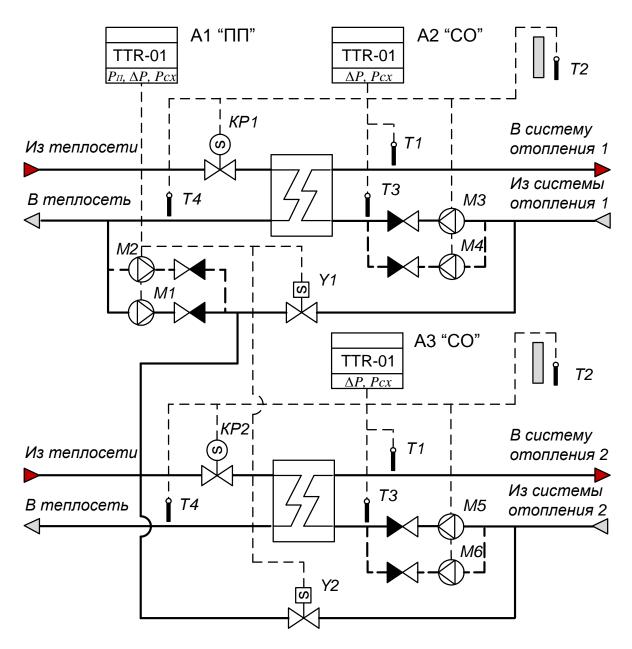
Пример применения: Управление подпиткой производит модуль управления A1. Давление в контуре отопления поддерживается работой клапана Y1, насоса подпитки M1 и, при необходимости, насоса M2 (резервный).

Модуль управления A2 поддерживает в системе отопления температурный график теплоносителя T1=f(T2) по подающему трубопроводу и обеспечивает при измерении T4 ограничение температуры теплоносителя, возвращаемого в систему теплосителя. Доступна функция понижения температуры теплоносителя по временному графику.

Для обеспечения циркуляции теплоносителя используется насос M3 и, при необходимости, насос M4 (резервный).

Модули управления A1 и A2 обеспечивают защиту работы насосов при отсутствии теплоносителя.

С целью обеспечения равномерного износа насосов доступны функции попеременной работы насосов и автоматического ввода в работу резервного насоса в случае неисправности работающего насоса.


Примечание — Для варианта регулирования температуры в контуре отопления по температурному графику теплоносителя обратного трубопровода необходимо на схеме поменять местами датчики температуры T1 и T4.

Функция термодатчиков:

- Т1 датчик температуры теплоносителя в подающем трубопроводе;
- Т2 датчик температуры наружного воздуха;
- T3 контрольный датчик температуры, устанавливается при необходимости:
- T4 датчик температуры теплоносителя в обратном трубопроводе, устанавливается при необходимости. Может выполнять функцию контрольного, аварийного или функцию ограничения температуры по месту установки.

Г.2 Двухконтурная независимая система отопления с узлом подпитки.

Пример применения: Управление подпиткой производит модуль управления A1. Давление в контурах отопления 1 и 2 поддерживается соответственно работой клапана Y1 и Y2, подпиточного насоса M1 и, при необходимости, насоса M2 (резервный).

Модули управления A2 и A3 поддерживают в системе отопления температурные графики теплоносителя T1=f(T2) и обеспечивает при измерении T4 ограничение температуры теплоносителя, возвращаемого в систему теплоснабжения.

Примечание — Для варианта регулирования температуры в контуре отопления по температурному графику теплоносителя обратного трубопровода необходимо на схеме поменять местами датчики температуры Т1 и Т4 в соответствующем контуре.

Функция термодатчиков:

- Т1 датик температуры теплоносителя в подающем трубопроводе;
- Т2 датчик температуры наружного воздуха;
- T3 контрольный датчик температуры, устанавливается при необходимости;
- T4 датчик температуры теплоносителя в обратном трубопроводе, устанавливается при необходимости. Может выполнять функцию контрольного, аварийного или функцию ограничения температуры по месту установки.

OTENAOCIAA

ГРУППА КОМПАНИЙ

Занимается производством и реализацией следующей продукции:

РЕГУЛЯТОРЫ ПЕРЕПАДА ДАВЛЕНИЯ И ДАВЛЕНИЯ «ПОСЛЕ СЕБЯ» (в том числе в высокотемпературном исполнении) ПРЯМОГО ДЕЙСТВИЯ

RDT, RDT-P, RDT-T

ТЕПЛООБМЕННИКИ ПЛАСТИНЧАТЫЕ РАЗБОРНЫЕ

ΕT

РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ «ДО СЕБЯ» И «ПЕРЕПУСКА»

RDT-S, RDT-B

БЛОЧНЫЕ ТЕПЛОВЫЕ ПУНКТЫ

БТП

КЛАПАНЫ ПРОХОДНЫЕ СЕДЕЛЬНЫ РЕГУЛИРУЮЩИЕ (в том числе в высокотемпературном исполнении)

TRV, TRV-T

КЛАПАНЫ ТРЕХХОДОВЫЕ РЕГУЛИРУЮЩИЕ СМЕСИТЕЛЬНЫЕ/ РАЗДЕЛИТЕЛЬНЫЕ

TRV-3

КЛАПАНЫ КОМБИНИРОВАННЫЕ (с автоматическим

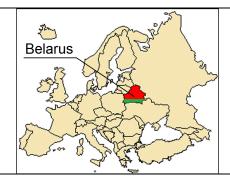
ограничением расхода)

TRV-C

ШКАФЫ УПРАВЛЕНИЯ **УШУ**

ЭЛЕКТРОПРИВОДЫ ПРЯМОХОДНЫЕ (с трехпозиционным и аналоговым (A) управлением; с функцией безопасности (R); с функцией регулирования температуры (T, TR))

TSL


* MATERIAL **

МОДУЛИ УПРАВЛЕНИЯ ОПОНМ ФУНКЦИОНАЛЬНЫЕ

TTR

ООО «Теплосила ВК» 222223, Республика Беларусь, Минская область, Смолевичский район, Китайско-Белорусский индустриальный парк «Великий камень», пр-т Минский, 30, пом.46 tel.fax. +375 (17) 396-89-16, 396-89-18 e-mail: teplo@teplo-sila.by

www.teplo-sila.com

Ред.06.06.25