

ООО «Завод Теплосила»

ТЕПЛООБМЕННИКИ ПЛАСТИНЧАТЫЕ РАЗБОРНЫЕ

тип ET

Руководство по эксплуатации ЮНСК.065149.001 РЭ

Содержание

1 Описание и работа	3
1.1 Назначение изделия	
1.2 Технические характеристики	3
1.3 Устройство и работа	
1.4 Средства измерения, инструмент и принадлежности	6
1.5 Маркировка и пломбирование	
1.6 Упаковка	7
2 Использование по назначению	8
2.1 Эксплуатационные ограничения	8
2.2 Меры безопасности	
2.3 Подготовка теплообменника к использованию	10
2.4 Использование теплообменника	13
3 Техническое обслуживание и ремонт	15
3.1 Общие указания	15
3.2 Порядок технического обслуживания теплообменника	16
3.3 Гарантийное и послегарантийное обслуживание, сведения о рекламаци	ıях21
4 Хранение	23
5 Транспортирование	23
6 Утилизация	24
ПРИЛОЖЕНИЕ А (рекомендуемое)	
Компоновка пластин и прокладок	25
ПРИЛОЖЕНИЕ Б (обязательное)	
Схемы строповки теплообменника	27
ПРИЛОЖЕНИЕ В (справочное)	
Схема обвязки теплообменника	28
ПРИЛОЖЕНИЕ Г (рекомендуемое)	
Моменты затяжек крепежных деталей теплообменников	29

Настоящее руководство по эксплуатации предназначено для подготовки персонала, занимающегося эксплуатацией теплообменников пластинчатых разборных. Документ содержит техническое описание конструкции, принцип работы теплообменника, основные технические характеристики, а также указания по техническому обслуживанию в процессе эксплуатации, условия хранения, транспортирования, монтажа и ремонта.

Лица, задействованные в установке, эксплуатации и техническом обслуживании изделия, должны внимательно изучить данный документ, устройство теплообменника пластинчатого разборного, действующие нормативные документы и инструкции. К монтажу, эксплуатации и техническому обслуживанию теплообменников допускается квалифицированный персонал, обученный и аттестованный в установленном порядке, прошедший инструктаж по технике безопасности.

Настоящее руководство по эксплуатации распространяется на теплообменники пластинчатые разборные. В процессе эксплуатации и обслуживания необходимо руководствоваться данными, указанными в паспорте, листе расчета и фирменной табличке, расположенной на передней плите теплообменника.

Изготовитель оставляет за собой право вносить в конструкцию изменения непринципиального характера, которые не ухудшают свойств и характеристик изделия и не влияют на работоспособность теплообменников без отражения в настоящем документе.

1 Описание и работа

1.1 Назначение изделия

1.1.1 Теплообменник пластинчатый разборный ЕТ (далее - теплообменник) предназначен для осуществления процесса теплообмена между жидкими и парообразными средами в системах отопления, горячего водоснабжения (ГВС) и вентиляции жилых, административных и промышленных зданий, а также в различных технологических теплообменных процессах, площадь поверхности теплообмена от 0,027 м² до 478 м², работающие под давлением не более 2,5 МПа. Предельный диапазон рабочих температур теплообменников определяется допустимой рабочей температурой конкретного вида уплотнения и варьируется от минус 10 °С до плюс 165 °С.

ВНИМАНИЕ: ТЕПЛООБМЕННИКИ С УПЛОТНЕНИЯМИ НА ОСНОВЕ ЕРDM НЕ ПРЕДНАЗНАЧЕНЫ ДЛЯ РАБОТЫ С ТОКСИЧНЫМИ, ВЗРЫВООПАСНЫМИ И ПОЖАРООПАСНЫМИ СРЕДАМИ.

- 1.1.2 Теплообменник предназначен для эксплуатации в районах с умеренным и холодным климатом, вид климатического исполнения УХЛ 3.1 по ГОСТ 15150 при температуре окружающей среды от плюс 1 °C до плюс 45 °C.
- 1.1.3 Теплообменники рассчитываются исключительно под конкретные условия эксплуатации (давление, температура и вид теплоносителя), определённые эксплуатирующей организацией. Расчёт и подбор теплообменников производится по компьютерной программе изготовителя. За расчёты, проведенные по другой методике, изготовитель ответственности не несёт.

1.2 Технические характеристики

- 1.2.1 Теплообменники изготавливаются с непрерывным рядом мощностей в следующих вариантах: одноходовые, двухходовые, трехходовые.
- 1.2.2 Теплообменники собираются из унифицированных деталей. По желанию заказчика в конструкцию теплообменника могут быть внесены изменения.
- 1.2.3 Обозначение теплообменника производится в соответствии с ТУ ВУ 690397591.002-2021.

Пример записи теплообменника в документах и при заказе:

ЕТ-002-1012865 – теплообменник пластинчатый разборный,

- где: 002 типоразмер пластин, 1012865- порядковый номер технического предложения (расчёта) теплообменника по системе нумерации изготовителя.
 - 1.2.4 Основные параметры теплообменника приведены в паспорте на изделие.
 - 1.2.5 Основные технические характеристики теплообменника приведены в таблице 1.

Таблица 1

Тип теплооб- менника	Площадь поверхности теплообмена пластины, м ²	Максимальное количество пластин, шт	Максимальная площадь поверхности теплообмена, м ²	Максимальный рабочий объём (вместимость) контура, м ³	Номинальный диаметр при- соединения
ET-002	0,027	160	4,27	0,0053	25
ET-006	0,054	176	9,4	0,0122	32; 50
ET-010	0,101	176	17,57	0,023	32; 50
ET-007	0,073	208	15,04	0,019	50
ET-014	0,150	208	30,9	0,039	50
ET-015M	0,223	224	49,51	0,054	50; 65; 80
ET-024	0,240	228	54,24	0,07	100
ET-034	0,355	228	80,23	0,104	100
ET-045	0,450	484	216,9	0,282	150
ET-068	0,680	484	327,76	0,426	150
ET-072	0,680	672	455,6	0,592	200
ET-100	1,000	480	478	0,621	200

1.2.6 Минимальное значение пробного давления при гидравлических испытаниях и показатели надежности теплообменника приведены в таблице 2.

Таблица 2

Наименование параметра	Значение
Давление гидравлических испытаний (пробное), МПа (бар) *	(Рраб · К) +0,1
Скорость подъема давления при гидравлических испытаниях, Мпа (бар) в мин, не более	0,3 (3,0)
Средняя наработка на отказ (отказ при работе), ч, не менее	15000
Средний срок службы теплообменника, год, не менее	10
Срок хранения, год, не менее	1
* Рраб – величина рабочего давления, К =1,25 – коэффициент.	

По истечении назначенных показателей (срока хранения, срока службы), указанных в таблице 2, прекращается эксплуатация оборудования и принимается решение о направлении его в ремонт, или утилизации, или о проверке и об установлении новых назначенных показателей (срока хранения, срока службы).

1.2.7 Значение пробного давления гидравлических испытаний уточняется в паспорте на теплообменник.

1.3 Устройство и работа

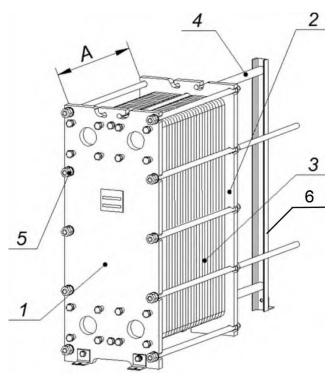


Рисунок 1 - Общий вид

- 1.3.1 Теплообменник представляет собой полностью разборную конструкцию и состоит из рамы и пакета пластин с резиновыми уплотнениями рисунок 1.
- 1.3.2 Рама состоит из неподвижной плиты (1) и прижимной плиты (2), задней стойки (6), которая соединена с неподвижной плитой верхней и нижней направляющей (4). Рамы разборных теплообменников выпускаются разной длины для обеспечения установки в нее разного количества пластин
- 1.3.3 Между неподвижной и прижимной плитами находится расчетное количество пластин (3) с резиновыми уплотнениями.
- 1.3.4 Пакет пластин прижат к неподвижной плите подвижной плитой стяжными шпильками (5). Степень сжатия (размер А) достаточна для уплотнения и герметизации внутренних полостей.
- 1.3.5 Теплообменник может иметь от четырех до восьми портов. Порты для подвода и отвода рабочих сред, участвующих в теплообмене, могут быть расположены как на неподвижной

плите, так и на прижимной.

- 1.3.6 В теплообменнике используются пластины различной формы и толщины в зависимости от типоразмера теплообменника, материала пластин и условий эксплуатации. Разнообразие исполнений пластин дает возможность сборки теплообменника под различные схемы подключения в системах теплоснабжения.
- 1.3.7 Пластины изготавливаются из нержавеющей стали методом холодной штамповки. Каждая вторая пластина в собранном пакете повернута по отношению к предыдущей пластине на 180°. Это означает, что каждый второй вход в канал между пластинами имеет двойное уплотнение. Такая компоновка образует теплообменный пакет с четырьмя коллекторами для подвода и отвода сред. Первая и последняя пластины не участвуют в процессе теплообмена.
- 1.3.8 Под каждую конкретную задачу подбирается необходимая компоновка пластин, которые образуют необходимое количество параллельных каналов, организованных в один или несколько ходов.
- 1.3.9 Резиновые уплотнения изготавливаются из материалов, удовлетворяющих условиям эксплуатации теплообменников. Резиновое уплотнение в каждой пластине, кроме первой, размещается по контуру и одновременно охватывает по кольцу два угловых отверстия, образуя две полости, первую межпластинную, через которую проходит один из потоков, а вторую переточную, через которую второй поток перетекает в следующую межпластинную полость.
- 1.3.10 Резиновые уплотнения, расположенные на пластине и закрепленные на ней при помощи клея или механической самофиксации, после стяжки пакета гарантируют эффективное уплотнение между внутренними полостями теплообменника и атмосферой.
- 1.3.11 Уплотнение отверстий (портов) на неподвижной плите осуществляется либо специальными кольцами, устанавливающимися между первой пластиной и неподвижной плитой, либо специальной прокладкой первой пластины, уплотнение отверстий на подвижной плите осуществляется специальными кольцами, устанавливающимися между последней пластиной и подвижной плитой.
- 1.3.12 Конструкция уплотнений теплообменника исключает возможность взаимного проникновения теплоносителей, а также внешнюю течь. При сборке пластины навешиваются уплотнением в сторону неподвижной плиты.
- 1.3.13 Пакет пластин с резиновыми уплотнениями образует ряд параллельных каналов (пространство между парой пластин), в которых протекают, обычно в режиме противотока, среды,

участвующие в теплообмене. Каналы для греющего теплоносителя располагаются через один, чередуясь с каналами для нагреваемого теплоносителя.

- 1.3.14 Процесс теплообмена происходит между двумя рабочими средами, перемещающимися противотоком по каналам щелевидной формы, образованными гофрированными поверхностями двух соседних пластин. В пристенном слое происходит усиление турбулентности потока за счет гофрированных поверхностей пластин. Схема течения сред организована таким образом, что две среды, участвующие в процессе теплообмена, движутся по разные стороны одной пластины.
- 1.3.15 Усиленная турбулентность и тонкий слой жидкости дают возможность значительно интенсифицировать теплоотдачу при сравнительно малых гидравлических сопротивлениях. При этом снижается загрязненность пластин.
- 1.3.16 Участвующие в теплообмене среды подаются в теплообменник через отверстия, находящиеся на неподвижной и прижимной плитах. Благодаря параллельному расположению пластин и отверстиям в них, образуются каналы, по которым среды расходятся в зазоры между пластинами и выходят из теплообменника. Во время прохода сред через теплообменник греющая среда отдает часть тепла пластине, которая, в свою очередь, охлаждается с другой стороны нагреваемой средой.
- 1.3.17 Для присоединения трубопроводов к теплообменнику в зависимости от типа используются резьбовой по ГОСТ 6357 или фланцевый по ГОСТ 33259 тип присоединения.
- 1.3.18 Теплообменник рассчитывается под конкретные параметры и в результате набирается такое количество пластин, которое необходимо для получения теплопередающей поверхности, достаточной для заданной производительности.
 - 1.3.19 Компоновка пластин и прокладок согласно приложению А.

1.4 Средства измерения, инструмент и принадлежности

- 1.4.1 Метрологическое обеспечение и обвязка теплообменника выполняется эксплуатирующей организацией (Заказчиком). Справочная информация о метрологическом обеспечении и правильной обвязке теплообменника приведена в приложении В.
- 1.4.2 Для подготовки к работе, техническому обслуживанию и выявлению неисправностей теплообменника необходимо обеспечение средствами измерения (СИ), приведенными в таблице 3.

Таблица 3

Наименование средства измерения	Исходные данные для выбора СИ	Назначение
Манометр ДМ-1001 - 2,5 МПа - 1,5 ГОСТ 2405-88	Предел измерения 0 - 2,5 МПа	Для проведения гидравлических испытаний
Манометр ДМ-1001 - 4,0 МПа – 1,5 ГОСТ 2405-88	Предел измерения 0 - 4,0 МПа	Для проведения гидравлических испытаний
Штангенциркуль ШЦ- I- 125-0,05 ГОСТ 166-89	Пределы измерения 0-125 мм Цена деления 0,05 мм	Для контроля качества сборки
Штангенциркуль ШЦ- II- 250-0,05 ГОСТ 166-89	Пределы измерения 0-250 мм Цена деления 0,05 мм	Для контроля качества сборки
Штангенциркуль ШЦ-III-1000-0,05 ГОСТ 166-89	Предел измерения 0 - 1000 мм	Для контроля качества сборки
Линейка – 1500 ГОСТ 427	Предел измерения 0 - 1500 мм	Для контроля качества сборки
Рулетка Р2У3Д ГОСТ 7502-98	Предел измерения 0-2000 мм	Для контроля качества сборки
Рулетка Р5У3Д ГОСТ 7502-98	Предел измерения 0-5000 мм	Для контроля качества сборки
Рулетка Р10У2К ГОСТ 7502-98	Предел измерения 0 – 10 000 м	Для контроля качества сборки
Пехи сохохила		

Примечания:

- 1. Манометры должны иметь класс точности не ниже 1,5.
- 2. Для контроля изделий допускается применение других средств измерений, обеспечивающих необходимую точность.
- 1.4.3 Средства измерения в комплект поставки не входят. Выбор конкретных типов СИ производится потребителем теплообменника.
- 1.4.4 Для выполнения работ по установке, техническому обслуживанию, демонтажу теплообменника необходимо обеспечение инструментом, приведённым в таблице 4.

Таблица 4

Наименование и обозначение	Количество	Назначение
1 Ключ 7811-0476 C1 X9 ГОСТ 2839 (S1xS2 = 18 x 21 мм)	1	П
2 Ключ 7811-0468 С1 Х9 ГОСТ 2839 (S1xS2 = 24 x 30 мм)	1	Для гаек, болтов, ниппелей, заглу-
3 Ключ 7811-0471 С 1 X 9 ГОСТ 2839 (S1xS2 = 30 x 36 мм)	1	шек и муфт
4 Ключ 7811-0046 С1 Х9 ГОСТ 2839 (S1xS2 = 46 x 50 мм)	1	тек и муфт

Примечания

- 1 Стандартный инструмент в объем поставки не входит.
- 2 Допускается использование других типов стандартного инструмента.

1.5 Маркировка и пломбирование

- 1.5.1 Каждый теплообменник снабжен фирменной табличкой, содержащей следующие данные:
 - наименование предприятия-изготовителя и (или) его товарный знак;
 - контактные данные предприятия-изготовителя;
- обозначение теплообменника, порядковый номер технического предложения (расчёта) теплообменника по системе нумерации изготовителя и обозначение технических условий;
 - заводской номер по системе нумерации предприятия-изготовителя;
 - количество пластин;
 - расчетное давление;
 - рабочее давление;
 - пробное давление;
 - тип рабочей среды для двух контуров;
 - расчетная температура;
 - допустимая макс/мин рабочая температура стенки;
 - средний срок службы;
 - масса, кг;
 - дата изготовления (число, месяц и год);
 - схему подключения портов теплообменника;
 - единый знак обращения продукции на рынке Евразийского экономического союза.
- 1.5.2 Заводской номер на табличке должен соответствовать заводскому номеру, указанному в паспорте.
- 1.5.3 Пломбирование ответственных разъемов изготовленного теплообменника выполняется под контролем службы технического контроля предприятия-изготовителя в соответствии с конструкторской документацией: проволокой и пломбой.
 - 1.5.4 Комплектность поставки соответствует таблице 5.

Таблица 5

Наименование	Обозначение	Количество
Теплообменник	ET	1 штука
Монтажный комплект		Согласно листу расчета
Упаковка		1 комплект
Паспорт	ЮНСК.065149.001 ПС	1 экземпляр
Руководство по эксплуатации	ЮНСК.065149.001 РЭ	1 экземпляр
Лист расчета		1 экземпляр

1.6 Упаковка

- 1.6.1 Теплообменник не требует специальной упаковки, транспортируется и хранится в собранном виде и полностью укомплектованным, закрепленным на деревянном поддоне и закрытым полиэтиленовой пленкой по ГОСТ 10354 или полиэтиленовой термоусадочной пленкой ГОСТ 25951, или другим водонепроницаемым материалом без средств временной противокоррозионной защиты.
- 1.6.2 Для предохранения от попадания посторонних предметов во внутрь теплообменников, все патрубки или фланцы должны быть закрыты (заглушены).

- 1.6.3 Комплект запасных частей, поставляется по отдельному договору, упаковывается в отдельную тару, и транспортируется вместе с теплообменником или отдельными транспортными блоками.
- 1.6.4 Эксплуатационная документация, прилагаемая к теплообменнику, упаковывается в пакет, изготовленный из полиэтиленовой пленки по ГОСТ 10354, или другого водонепроницаемого материала. Пакет с документацией закрепляется на поверхности теплообменника.
- 1.6.5 При хранении теплообменника, прошедшего ремонтно-восстановительные работы на эксплуатирующем предприятии, в качестве изолирующего материала следует использовать полиэтиленовую пленку ГОСТ 10354 или другой водонепроницаемый материал.
- 1.6.6 При длительном хранении теплообменника на территории эксплуатирующего предприятия контроль за соблюдением правил и условий хранения изделий выполняется под наблюдением обслуживающих служб эксплуатирующего предприятия (Заказчика).
- 1.6.7 Возможно изменение варианта упаковки теплообменника в соответствии с требованиями договора.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 Подготовка теплообменника к работе, запуск в работу, остановка и обслуживание во время эксплуатации должны проводиться в совокупности с выполнением указаний соответствующих разделов руководства по эксплуатации и инструкций по эксплуатации циркуляционного контура штатной системы, в которой предусмотрена его установка.
- 2.1.2 Теплообменник предназначен для эксплуатации при заданных значениях расходов, температур, давлений, типа теплоносителя, указанных в паспорте на теплообменник. Работоспособность теплообменника при иных условиях эксплуатации не гарантируется.
- 2.1.3 Запрещается использование в процессах теплообмена сред, соприкосновение которых при определенной концентрации приводит к самовоспламенению, взрыву и т.п.
- 2.1.4 Для защиты теплообменника во время запуска в работу и его эксплуатации комплектом пускозащитного оборудования системы, в которой он устанавливается, должны быть предусмотрены:
 - защита от гидравлического удара;
 - защита от пульсации давления;
 - защита от превышения давления выше максимального значения;
 - защита от повышенной вибрации теплообменника;
 - защита от попадания инородных тел во внутренние полости;
- защита от воздействия солнечных лучей, источников ультрафиолетового излучения (сварки) и озона.
- 2.1.5 Теплообменник чувствителен к гидравлическому удару. Гидравлический удар может произойти при регулировании, ремонтах, запуске насосов и т.д. Для того чтобы исключить гидравлический удар, рекомендуется использовать дросселирование пневматических клапанов, устанавливать реле запаздывания в электрической сети управления, организовывать автоматический запуск насосов только при закрытой арматуре (на закрытую задвижку) и т.д.
- 2.1.6 При наличии в системе поршневых, шестеренных насосов, дозирующих устройств и т.п., необходимо исключить возможность передачи пульсации давления и вибраций на пластинчатый теплообменник, так как это может вызвать усталостные трещины в пластинах, что приведет к выходу теплообменника из строя.
- 2.1.7 Защита от превышения давления должна обеспечиваться технологической схемой системы, в которой предусмотрена эксплуатация теплообменника.
- 2.1.8 При эксплуатации теплообменника необходимо защитить пакет пластин и прокладок от воздействия солнечных лучей, иных источников ультрафиолетового излучения (например, сварки) и озона установкой защитного экрана.
- 2.1.9 При проведении гидравлических испытаний одновременно по двум контурам величина пробного давления составляет 1,25 от рабочего давления, разница давлений между контурами теплообменника не должна превышать 0,6 МПа.
- 2.1.10 При эксплуатации теплообменника разница давлений между контурами не должна превышать расчетного давления.

ВНИМАНИЕ! ИСПОЛЬЗОВАНИЕ ТЕПЛООБМЕННИКА С ОДНИМ ЗАПОЛНЕННЫМ КОНТУРОМ НЕ ДОПУСКАЕТСЯ

- 2.1.11~ При бездействии теплообменника сроком до 24 часов, если рабочая среда из циркуляционного контура штатной системы не сливается, температура рабочей среды в контуре должна быть не ниже 5 °C.
- 2.1.12 Эксплуатация теплообменника в заполненном состоянии без циркуляции рабочих сред свыше 24 часов не допускается. Иначе необходимо обеспечить циркуляцию рабочих сред или слить из него рабочие среды.

2.2 Меры безопасности

- 2.2.1 На всех этапах эксплуатации теплообменника необходимо строго соблюдать меры безопасности, изложенные в данном подразделе.
- 2.2.2 К монтажу, демонтажу, наладке и обслуживанию допускаются лица, изучившие настоящее руководство, эксплуатационную документацию, конструкцию теплообменника, прошедшие аттестацию и инструктаж по технике безопасности, пожарной безопасности и производственной санитарии.
- 2.2.3 Периодический инструктаж персонала, обслуживающего теплообменник, по правилам техники безопасности должен проводиться по регламенту, установленному службой эксплуатации.
- 2.2.4 Подъем и перемещение теплообменника производить только в соответствии со схемами строповки, указанными в приложении Б (рисунок Б.1). Строповка теплообменника за стяжные шпильки не допускается.

ВНИМАНИЕ! ЗАПРЕЩЕНО ПОДНИМАТЬ ТЕПЛООБМЕННИК ЗА ПРИСОЕДИНИТЕЛЬНЫЕ ОТВЕРСТИЯ ИЛИ СТЯЖНЫЕ ШПИЛЬКИ!

- 2.2.5 При подготовке теплообменника к работе и его техническом обслуживании запрещается пользоваться неисправным или непроверенным инструментом, случайными подставками.
- 2.2.6 При проведении сварочных работ во время монтажа, эксплуатации и обслуживании теплообменника запрещается использовать его в заземляющем контуре.
- 2.2.7 Теплообменники представляют собой аппараты, работающие под высоким давлением и при высоких температурах, поэтому ЗАПРЕЩАЕТСЯ:
- эксплуатировать теплообменники в технологических процессах с параметрами (температура и давление) и средой отличающихся от указанных в паспорте;
- производить затяжку болтовых соединений фланцев трубопроводов, подводящих рабочие среды к теплообменнику, находящемуся под давлением;
- производить работы по устранению неполадок и дефектов при наличии давления во внутренней полости теплообменника и температуры рабочей среды выше 40 °C.
- загрязнять каналы теплообменника рабочими средами, содержащими мусор, песок, глину, волокнистые включения и другие твердые примеси;
- эксплуатировать теплообменник в условиях резких скачков давления более 0,3 МПа/с (гидроудар) и/или температур рабочих сред более 100 °C/мин (термоудар);
- эксплуатировать теплообменник при неисправности запорной арматуры и/или контрольно-измерительных приборов.
- эксплуатировать теплообменник в условиях, когда в пределах одного пакета пластин (или одного хода для многоходовых аппаратов) разность температур между входящими потоками рабочих сред превышает 150 °C;
- эксплуатировать теплообменник в условиях циклических или знакопеременных нагрузок, у которых размах колебания давления превышает 10 % от расчётного значения, и скорость изменения которых превышает 0,1 МПа/с.
 - ремонтировать теплообменник до его полного отключения, остывания и опорожнения;
 - чистить теплообменники механическим способом без средств индивидуальной защиты;
 - использовать соляную кислоту и продукты на ее основе для химической чистки;
 - работать с пластинами без рукавиц (при малой толщине пластин опасность порезов).

ВНИМАНИЕ! ОБСТУКИВАНИЕ КОРПУСА, РАЗЪЕМНЫХ И СВАРНЫХ СОЕДИНЕНИЙ, А ТАКЖЕ ПОДТЯЖКА СТЯЖНЫХ ШПИЛЕК, НАХОДЯЩЕГОСЯ ПОД ДАВЛЕНИЕМ ТЕПЛООБМЕННИКА ЗАПРЕЩАЕТСЯ.

- 2.2.8 Теплообменник, температура наружных поверхностей которого в процессе эксплуатации может превышать 40 °C, должен быть теплоизолирован. Рекомендуется дополнительная установка ограждающих конструкций теплообменника. Теплоизоляция и ограждающие конструкции теплообменника в комплект поставки не входит.
- 2.2.9 Перед испытанием и эксплуатацией теплообменника необходимо проверить все крепежные соединения.
- 2.2.10 При гидравлических испытаниях теплообменника не допускается использование сжатого воздуха или другого газа для подъема давления.
- 2.2.11 При заполнении (дренаже) теплообменника принять меры предосторожности от возможного разбрызгивания горячих или опасных сред из воздушных (дренажных) вентилей.
- 2.2.12 Перед присоединением трубопроводов убедитесь в том, что все посторонние предметы удалены из системы путем промывания.
- 2.2.13 При присоединении труб следите за тем, чтобы они не вызывали давление на пластинчатый теплообменник или его растяжение.
 - 2.2.14 Во избежание гидравлического удара не применяйте быстрозакрывающиеся вентили.
- 2.2.15 В пакете пластин может оставаться небольшое количество жидкости после слива. В зависимости от типа жидкости может понадобиться дренажный поддон для избегания травм персонала и повреждения оборудования.

2.3 Подготовка теплообменника к использованию

2.3.1 Монтаж изделия

- 2.3.1.1 Требования по доставке к месту монтажа:
- а) НЕ БРОСАТЬ!
- б) НЕ КАНТОВАТЬ!
- в) НЕ ПЕРЕМЕЩАТЬ ПО СТУПЕНЬКАМ ЛЕСНИЧНЫХ МАРШЕЙ!
- г) НЕ ПЕРЕМЕЩАТЬ ВОЛОКОМ!
- д) КРЕПЛЕНИЕ ОСУЩЕСТВЛЯТЬ МЯГКИМИ СТРОПАМИ, ТОЛЬКО ЗА РЫМ-БОЛТЫ ИЛИ ТРАНСПОРТНЫЕ ПРОУШИНЫ ОДНОВРЕМЕННО НА ОБЕИХ СТЯЖНЫХ ПЛИТАХ!
- 2.3.1.2 Теплообменник должен быть смонтирован специализированной монтажной организацией, имеющей необходимые лицензии, в соответствии с требуемыми стандартами и нормами. Монтажная организация несет полную ответственность за подготовку, установку и присоединение теплообменного оборудования.
- 2.3.1.3 Удалить с теплообменника все средства консервации (полиэтиленовую пленку и транспортные заглушки, при наличии).
- 2.3.1.4 Демонтировать теплообменник и комплект запасных частей (при наличии) с деревянного поддона или извлечь из иной другой тары (ящика).
- 2.3.1.5 После снятия транспортных заглушек (при наличии) обеспечить чистоту и исключить попадание во внутренние полости теплообменника посторонних предметов. Транспортные заглушки с портов теплообменника снимать непосредственно перед подсоединением к ним соответствующих трубопроводов.
- 2.3.1.6 Строповку теплообменника производить в соответствии со схемами строповки, указанными в приложении Б (рисунок Б.1). Строповка теплообменника за стяжные шпильки запрещена.
- 2.3.1.7 Строповку теплообменника производить при помощи пенькового или синтетического стропа с достаточной грузоподъемностью. Применение стального стропа не допускается.
 - 2.3.1.8 Проверить комплектность теплообменника и его составных частей.
- 2.3.1.9 Визуально проверить внешнее состояние оборудования на отсутствие механических и коррозионных повреждений.
- 2.3.1.10 Подготовить опорную фундаментную раму для установки теплообменника. Допуск параллельности поверхности фундаментной рамы относительно плоскости горизонта 0,5 мм на длине 1000 мм. Фундаментная рама подготавливается по документации эксплуатирующей организации (Заказчика) и в комплект поставки не входит.
- 2.3.1.11 Установить теплообменник на фундаментную раму и закрепить его, используя отверстия в опорах. Крепежные изделия в комплект поставки не входят.

- 2.3.1.12 После установки при незатянутом креплении теплообменника к фундаментной раме произвести проверку зазоров между сопрягаемыми поверхностями опорных лап теплообменника и фундаментной рамы. Допустимый зазор не более 0,3 мм.
- 2.3.1.13 Монтажные размеры и диаметры отверстий под болты крепления к фундаментной раме приведены в паспорте.
- 2.3.1.14 Необходимо предусмотреть достаточное расстояние между монтируемым теплообменником, соседним оборудованием или стенами помещения для извлечения пластин из теплообменника, стяжки теплообменника, осмотра и прохода.
- 2.3.1.15 Источником нарушения экологической чистоты могут быть рабочие среды, участвующие в теплообмене, поэтому конструктивно эксплуатирующей организацией должно быть предусмотрено следующее:
 - специализированное место для дренажного слива рабочих сред;
 - исключены неорганизованные утечки рабочих сред;
 - опорожнение теплообменника перед его демонтажем и разборкой.
- 2.3.1.16 В случае если слив рабочих сред производится в систему канализации, необходимо исключить возможность загрязнения окружающей среды. В случае отсутствия возможности отвода рабочих сред непосредственно в дренажную систему, под теплообменником рекомендуется установить поддон.
- 2.3.1.17 Присоединить трубопроводы к портам теплообменника. Ответные фланцы и крепежные изделия могут не входить в комплект поставки теплообменника. Маркировка присоединительных выходов у теплообменника (в стандартном исполнении) приведена в таблице 6. Чтобы иметь возможность отключать теплообменник, на всех патрубках должны быть установлены запорные вентили.

Таблица 6

	Условные обозначения на	
Наименование трубопровода	теплообменнике для систем	
	ГВС	CO
1. Подающий трубопровод тепловой сети (Т1)	T1	T1
2. Обратный трубопровод тепловой сети (Т2)	T2	T2
3. Трубопровод хозяйственно-питьевого водопровода (В1)	B1	-
4. Трубопровод горячей воды, подающий (Т3)	Т3	-
5. Трубопровод горячей воды, циркуляционный (Т4)	T4	-
6. Трубопровод прямой сетевой воды системы отопления (Т12)	1	Т3
7. Трубопровод обратной сетевой воды системы отопления (Т22)	T22	B1

- 2.3.1.18 Для исключения дополнительных нагрузок на корпус теплообменника все трубопроводы, подсоединяемые к теплообменнику, должны быть жестко закреплены и поддерживаться опорами.
- 2.3.1.19 Перед проведением гидравлических испытаний необходимо убедиться в надежности крепления стяжных шпилек теплообменника от возможного раскручивания при транспортировке. Стяжные шпильки не должны проворачиваться «от руки». Так же необходимо проверить соответствие расстояния между неподвижной и прижимной плитой (размер А) значению, указанному в паспорте. В случае ослабления стяжных шпилек их необходимо подтянуть, соблюдая размер стяжки, допуск параллельности плит должен быть в пределах 0,3 % размера плиты.

ВНИМАНИЕ! МИНИМАЛЬНО ДОПУСТИМОЕ РАССТОЯНИЕ МЕЖДУ ПЛИТАМИ – ВЕЛИЧИНА УСЛОВНАЯ, ОНА МОЖЕТ МЕНЯТЬСЯ В ЗАВИСИМОСТИ ОТ ПАРТИИ ПЛАСТИН И ПРОКЛАДОК.

- 2.3.1.20 Затяжку фланцевого крепежа производить согласно приложению Г.
- 2.3.1.21 После окончания монтажа проверить теплообменник и места подсоединения к нему трубопроводов гидравлическим давлением в составе штатной системы, в которой предусмотрена эксплуатация теплообменника в соответствии с требованиями паспорта. Время выдержки под пробным давлением при испытании на прочность и герметичность перед вводом в эксплуатацию назначается согласно программе испытаний эксплуатирующей организации, но не менее 10 мин. Давле-

ние гидравлического испытания для теплообменников изготовленных в соответствии с требованиями ГОСТ ISO 15547-1, ГОСТ Р ИСО 15547-1 должно удерживаться для выявления утечек не менее 30 мин.

ВНИМАНИЕ! ТЕПЛООБМЕННИКИ должны БЫТЬ **ЗАЗЕМЛЕНЫ** B ЗАЩИЩЕНЫ СООТВЕТСТВИИ \mathbf{C} ГОСТ12.2.007.0 И OT СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА ПОТРЕБИТЕЛЕМ, ПУТЕМ ВЫПОЛНЕНИЯ ЗАЗЕМЛЕНИЯ НА ПОДВОДЯЩИХ ТРУБОПРОВОДАХ НА РАССТОЯНИИ НЕ БОЛЕЕ 20 СМ ТЕПЛООБМЕННИКА. СОПРОТИВЛЕНИЕ ЗАЗЕМЛЯЮЩЕГО КОНТУРА НЕ БОЛЕЕ 4 OM.

ПРИ ПРОВЕДЕНИИ СВАРОЧНЫХ РАБОТ ВО ВРЕМЯ МОНТАЖА, ЭКСПЛУАТАЦИИ И ОБСЛУЖИВАНИИ ТЕПЛООБМЕННИКА ЗАПРЕЩАЕТСЯ ИСПОЛЬЗОВАТЬ ЕГО В ЗАЗЕМЛЯЮЩЕМ КОНТУРЕ.

ПРИ ПРОИЗВОДСТВЕ СВАРОЧНЫХ РАБОТ НЕ ДОПУСКАЕТСЯ КАСАТЬСЯ ЭЛЕКТРОДОМ ПЛИТ И ПЛАСТИН ТЕПЛООБМЕННИКА;

СВАРКА ТРУБОПРОВОДА И ФЛАНЦА ТЕПЛООБМЕННИКА ДОЛЖНА ПРОВОДИТЬСЯ ПРИ СНЯТОМ ФЛАНЦЕ;

ТЕПЛООБМЕННИК НЕОБХОДИМО УКРЫТЬ ОТ ВОЗМОЖНЫХ ИСКР И ОЧАГА СВАРКИ НЕГОРЮЧИМ МАТЕРИАЛОМ!

2.3.2 Демонтаж теплообменника

- 2.3.2.1 Последовательно отключить сначала горячий контур, затем холодный контур теплообменника. Убедится в том, что в контурах теплообменника отсутствует давление и температура стенки имеет положительную температуру не более 40 °C.
- 2.3.2.2 Слить рабочую среду из теплообменника в соответствии с инструкцией по обслуживанию штатной системы, в которой предусмотрена эксплуатация теплообменника и произвести демонтаж теплообменника в следующей последовательности:
- отвернуть соединительные муфты или болты крепления ответных фланцев и отсоединить трубопроводы рабочих сред от портов теплообменника.
- отвернуть детали крепления теплообменника к фундаментной раме и демонтировать теплообменник.
- 2.3.2.3 Все работы по демонтажу теплообменника должны производиться по документации эксплуатирующей организации (Заказчика).

2.3.3 Подготовка теплообменника к использованию и запуск в работу

- 2.3.3.1 Настоящий раздел определяет порядок подготовки теплообменника к работе после:
- установки на объект в состав штатной системы;
- осушения штатной системы, в состав которой входит теплообменник;
- длительного бездействия.
- 2.3.3.2 Проверить соответствие расстояния А значению, указанному в паспорте. Номинальное значение расстояния приведено в паспорте.
- 2.3.3.3 Заполнить внутренние полости теплообменника постепенным заполнением контура рабочими средами путем плавного открытия запорной арматуры на циркуляционных трубопроводах штатной системы.
- 2.3.3.4 Необходимо избегать резких повышений давления и температуры, так как это может вызвать повреждение пластин и прокладок и привести к появлению течей. Пуск насосов должен производиться при закрытых клапанах. Регулирующая и запорная арматура должна открываться плавно.
- 2.3.3.5 Последовательно запустить в работу сначала нагреваемый (холодный) контур, а затем охлаждаемый (горячий).
- 2.3.3.6 Скорость подъема и снижения давления при пуске и останове не должна превышать 0,3 МПа в мин.
- 2.3.3.7 Скорость изменения температуры при пуске и останове не должна превышать $10~^{\circ}$ С в мин.

- 2.3.3.8 Пуск теплообменника в зимний период времени при температуре окружающей среды ниже нуля °С производить по следующей схеме:
 - скорость изменения температуры не должна превышать 30 °C в час;
 - давление рабочей среды во время пуска не должно превышать 0,2 МПа;
- при достижении температуры стенки теплообменника нуля $^{\circ}$ С, произвести подъем давления среды до рабочего, со скоростью не более $0.3\,$ МПа в мин.
- 2.3.3.9 Произвести удаление воздуха из внутренних полостей теплообменника. Наличие воздуха в пластинчатом теплообменнике снижает теплопередающие характеристики и увеличивает гидравлическое сопротивление аппарата (падение давления), что в свою очередь приводит к повышению вероятности появления коррозии. Воздух из пластинчатого теплообменника вытесняется потоком среды.
- 2.3.3.10 Запуск в эксплуатацию теплообменника после кратковременного бездействия в составе штатной системы, заполненной рабочей средой, производится в режиме первоначального пуска.
- 2.3.3.11 Контроль работы теплообменника производится по показаниям установленных приборов. Периодичность контроля по регламенту эксплуатирующей организации (Заказчика).
- 2.3.3.12 Во время пуска теплообменника могут возникнуть небольшие течи, которые исчезнут после разогрева пластин и прокладок до рабочей температуры.

2.4 Использование теплообменника

2.4.1 Порядок пуска теплообменника

- 2.4.1.1 Перед пуском теплообменника необходимо провести гидравлические испытания на герметичность и прочность.
- 2.4.1.2 Гидравлические испытания теплообменника на герметичность проводить раздельно для каждого контура, при пробном давление в контуре не более 0,6 МПа в течении 15 мин. Второй контур должен оставаться открытым для контроля перетока внутри аппарата.
- 2.4.1.3 Гидравлические испытания теплообменника на прочность проводить путем подачи воды в два рабочих контура. Минимальное значение пробного давления составляет 1,25 рабочего давления. При проведении гидравлических испытаний разница давлений между контурами теплообменника не должна превышать 0,6 МПа. Давление необходимо повышать одновременно в двух контурах. Время выдержки под пробным давлением 15 мин.
- 2.4.1.4 Давление гидравлического испытания для теплообменников изготовленных в соответствии с требованиями ГОСТ ISO 15547-1, ГОСТ Р ИСО 15547-1 должно удерживаться для выявления утечек не менее 30 мин.
- 2.4.1.5 Результаты гидравлических испытаний на герметичность и прочность считаются положительными, если во время их проведения не произошло падения давления, не обнаружено разрыва, сообщения воды между контурами, течи, отсутствуют признаки сдвига или деформации.
 - 2.4.1.6 Задвижки на входе и на выходе сред в теплообменник должны быть закрыты.
- 2.4.1.7 Осуществить пуск теплообменника открытием вначале задвижек на выходе сред из теплообменника, а затем на входе. Заполнить внутренние полости теплообменника рабочими средами путем плавного открытия запорной арматуры на трубопроводах системы (время открытия закрытия арматуры должно составлять 2...3 мин).

ВНИМАНИЕ! ОТКРЫТИЕ ЗАДВИЖЕК НА ВХОДЕ ПРОИЗВОДИТЬ МЕДЛЕННО.

- 2.4.1.8 Необходимо избегать резких повышений давления и температуры, так как это может вызвать повреждение пластин и прокладок и привести к появлению течей. Пуск насосов должен производиться при закрытых клапанах. Запорно-регулирующая арматура должна открываться плавно.
- 2.4.1.9 При давлении сред выше 0,6 МПа обе задвижки должны открывать два человека одновременно.

ВНИМАНИЕ! ПРИ ДАВЛЕНИИ СРЕД НИЖЕ 0,6 МПа, ПЕРВОЙ НАДО ОТКРЫВАТЬ ЗАДВИЖКУ СРЕДЫ С МЕНЬШИМ ДАВЛЕНИЕМ, ЗАТЕМ С БОЛЬШИМ.

2.4.1.10 Скорость подъема и снижения давления при пуске и останове не должна превышать 0,3 МПа в мин.

2.4.1.11 Скорость изменения температуры при пуске и останове не более 10 °С в мин.

ВНИМАНИЕ! ИСПОЛЬЗОВАНИЕ ТЕПЛООБМЕННИКА С ОДНИМ ЗАПОЛНЕННЫМ КОНТУРОМ НЕ ДОПУСКАЕТСЯ.

2.4.1.12 При проведении пуска/остановки теплообменника необходимо соблюдать меры безопасности, изложенные в подразделе 2.2.

2.4.2 Остановка теплообменника

2.4.2.1 Последовательно отключить сначала горячий контур, затем холодный контур теплообменника. Убедится в том, что в контурах теплообменника отсутствует давление и температура стенки имеет положительную температуру не более 40 °C. Если рабочее давление сред выше 0,6 МПа, то отключение теплообменника производится одновременно закрытием обеих задвижек на входе сред.

ВНИМАНИЕ! ЕСЛИ ДАВЛЕНИЕ ОДНОГО ИЛИ ОБОИХ ТЕПЛОНОСИТЕЛЕЙ НИЖЕ 0,6 МПа, ТО ПЕРВОЙ ЗАКРЫВАЕТСЯ ЗАДВИЖКА СРЕДЫ С БОЛЬШИМ РАБОЧИМ ЛАВЛЕНИЕМ.

- 2.4.2.2 Слить рабочую среду из теплообменника в соответствии с инструкцией по обслуживанию штатной системы, в которой предусмотрена эксплуатация теплообменника
 - 2.4.2.3 Закрыть задвижки на выходе сред из теплообменника.
- 2.4.2.4 При длительном простое теплообменника, рекомендуется слить жидкости из обеих контуров теплообменника.

2.4.3 Перечень возможных неисправностей и способы их устранения

2.4.3.1 Перечень возможных неисправностей теплообменника и способы их устранения приведены в таблице 7.

Таблина 7

Признак неисправности	Характеристики неисправности	Возможная причина неисправности	Способ устранения неисправности
ствие фактиче- ских парамет-	Снижение тепловой производительности и (или) увеличение гид-	Фактические условия эксплуатации теплообменника не соответствуют расчетным.	Привести фактические условия эксплуатации в соответствие с расчетными
менника рас- четным	равлического со- противления	Загрязнение или засорение теплообменника	Разобрать теплообменник и произвести очистку пластин
		Рабочее давление превы- шает расчетное для тепло- обменника	Снизить давление до установленного рабочего значения
2. Видимая протечка среды из теплообменника видна протечка среды из теплообменника	Теплообменник не стянут до рабочего состояния: ослабли стяжки пакета пластин	Подтянуть стяжки пакета пластин, не превышая минимально допустимого размера. Если после стяжки на минимальный размер течь не прекратилась, полностью заменить прокладки.	
	Потеря эластичности про- кладок или их деформа- ция или смещение	Разобрать теплообменник, выявить дефектные прокладки и их заменить. Установить и устранить причину появления дефекта прокладок. Не допускать быстрого открытия и закрытия вентилей, т.к. в этом случае происходит смещение прокладок.	
		Деформация пластин	Разобрать теплообменник, выявить дефектные пластины, произвести их правку, при невозможности правки -заменить. Установить и устранить причину деформации пластин.

Признак неисправности	Характеристики неисправности	Возможная причина неисправности	Способ устранения неисправности
	среды через дре-	Повреждение участка прокладки, входящего в дренажную полость.	Разобрать теплообменник, заменить дефектные прокладки. Установить и устранить причину повреждения прокладок.
		Сквозная коррозия пла- стин в дренажной зоне	Разобрать теплообменник, заменить дефектные пластины. Установить и устранить причины коррозии пластин
3. Невидимые течи	Смешивание сред, участвующих в теплообмене	рушения, неправильный	Разобрать теплообменник, тщательно проверить каждую пластину на наличие отверстий. Заменить дефектные пластины. Установить и устранить причины повреждения пластин.

Примечания:

- 1. При обнаружении невидимой течи необходимо осушить один из контуров и отсоединить от порта один из нижних трубопроводов обвязки. Поднять давление рабочей среды в противоположном контуре до рабочего, но не более 0,6 МПа. Наличие течи из порта, от которого отсоединили трубопровод, после стабилизации давления на противоположном контуре говорит об утечке через одну или несколько пластин.
- 2. В случае наличия рабочей среды в обоих контурах и поднятия давления рабочей среды (опрессовки) по одному из контуров будет происходить поднятие давления рабочих сред в обоих контурах. Это является конструктивной особенностью пластинчатого теплообменника и не является фактом наличия невидимой течи.

2.4.4 Критический отказ (авария или инцидент) теплообменника.

- 2.4.4.1 Критическим отказом (аварией или инцидентом) теплообменника является необратимое разрушение деталей теплообменника вызванное коррозией, эрозией, старением материалов и неправильной эксплуатацией теплообменника, приведшее к причинению вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений, тяжесть последствий которого признана недопустимой и требует принятия специальных мер по снижению его вероятности и (или) возможного ущерба, связанного с его возникновением.
 - 2.4.4.2 Возможные ошибочные действия персонала, приводящие к инциденту или аварии:
 - пренебрежение мерами безопасности, изложенными в подразделе 2.2;
- неправильное/недостаточное техническое обслуживание теплообменника, изложенное в разделе 3;
 - эксплуатация теплообменника при отсутствии эксплуатационных документов.
 - 2.4.4.3 Действия персонала в случае критического отказа (аварии или инцидента):
- при критическом отказе (аварии или инциденте) необходимо немедленно прекратить подачу рабочих сред в теплообменник, перекрыв запорную арматуру на трубопроводах обвязки;
- действовать в соответствии с утвержденными на предприятии инструкциями по локализации аварийных ситуаций.

3 Техническое обслуживание и ремонт

3.1 Общие указания

- 3.1.1 Для поддержания исправности и работоспособности теплообменника и обеспечения его нормальной работы необходимо проводить техническое обслуживание теплообменника.
- 3.1.2 К техническому обслуживанию теплообменника допускаются лица, изучившие устройство, правила безопасности при его работе, требования настоящего руководства, а также инструкцию по эксплуатации циркуляционного контура штатной системы, в которой предусмотрена эксплуатация теплообменника.
 - 3.1.3 Техническое обслуживание теплообменника производится в процессе эксплуатации.
- 3.1.4 Своевременное и качественное выполнение мероприятий по техническому обслуживанию предупреждает появление неисправностей и отказов в работе и обеспечивает высокий уровень эксплуатационной надежности теплообменника.

- 3.1.5 Все неисправности, выявленные в процессе технического обслуживания, должны быть устранены, замечания о техническом состоянии теплообменника и его составных частей занесены в журнал учета технического обслуживания.
- 3.1.6 При проведении технического обслуживания необходимо соблюдать меры безопасности, изложенные в подразделе 2.2.

3.2 Порядок технического обслуживания теплообменника

3.2.1 Перечень работ для различных видов технического обслуживания при эксплуатации теплообменника приведен в таблице 8.

Таблица 8

Перечень работ	Периодичность
Контроль параметров теплообменника	Во время эксплуатации
Узлы крепления теплообменник	а к фундаментной раме
Визуальный контроль:	
- надежности сопряжения опор теплообменника с несущими элементами фундаментной рамы; - полноты затягивания крепежных соединений;	Контроль технического состояния узлов перед пуском в эксплуатацию, ежемесячно, при необходимости, но не реже чем раз в четыре
- надежности стопорения крепежных соединений;	года
- отсутствия загрязнений и следов коррозии.	
Фланцевые разъемы портов подво	рда и отвода раоочих сред
Визуальный контроль: - плотности разъёмного соединения (отсутствия следов подтекания); - полноты затягивания крепежных соединений (отсутствия следов подтекания); - надежности стопорения крепежных деталей; - отсутствия загрязнений и следов коррозии.	Контроль технического состояния узлов перед пуском в эксплуатацию, ежемесячно, при необходимости, но не реже чем раз в четыре года
Пластины теплоо	бменные
Визуальный контроль: - состояния пластин; - отсутствия следов коррозии; - отсутствия механических повреждений и загрязнений. При необходимости применить контроль методом капиллярной дефектоскопии.	В случае неисправностей по п. 2, 3 таблицы 7, но не реже чем раз в четыре года
Герметичность тепл	ообменника
Гидравлические испытания: - отсутствие внешней течи; - отсутствие внутренних течей; - отсутствие падения давления	После каждой разборки/сборки теплообменника (механическая чистка, изменение количества теплообменных пластин, замена теплообменных пластин/прокладок и т.д.), но не режечем раз в четыре года

3.2.2 Техническое освидетельствование теплообменника

- 3.2.2.1 Виды технического освидетельствования:
- первичное (до ввода в эксплуатацию после монтажа);
- периодическое (периодически в процессе эксплуатации);
- внеочередное.
- 3.2.2.2 При первичном техническом освидетельствовании допускается не проводить осмотр внутренней поверхности и гидравлическое испытание теплообменника если не нарушены указанные в нем сроки и условия консервации, не повреждена гарантийная пломба, а также на элементах теплообменника отсутствуют видимые повреждения.
- 3.2.2.3 Первичное, периодическое и внеочередное техническое освидетельствование теплообменника производится в следующей последовательности:
 - наружный и внутренний осмотры в объеме и в сроки согласно таблице 9;
- гидравлические испытания в объеме и в сроки согласно таблице 9 с учетом требований п. 1.2.6, 1.2.7 настоящего руководства по эксплуатации.

- 3.2.2.4 Перед проведением осмотра (визуального и измерительного контроля) внутренней поверхности теплообменника, иных работ внутри теплообменника и его гидравлического испытания, теплообменник должен быть остановлен, охлажден (отогрет), освобожден от заполняющей его рабочей среды с проведением вентилирования (продувки) и нейтрализации, дегазации (при необходимости), отключен от источников питания и всех трубопроводов, соединяющих теплообменник с источниками давления или другими сосудами и технологическим оборудованием.
- 3.2.2.5 Порядок проведения указанных работ в зависимости от свойств рабочей среды, особенностей схемы включения теплообменника и технологического процесса, должен быть установлен в производственной инструкции или в иной документации по безопасному ведению работ (технологический регламент, инструкция), утвержденной эксплуатирующей и (или) уполномоченной специализированной организацией, осуществляющей выполнение указанных работ.

Таблица 9

Минимальный объем		Периодичность			
Первичное					
1 Проведение визуаль	1 Проведение визуального и измерительного контроля с внутренней (при до-				
ступности) и наружно					
2 Контроль толщины	стенок элементов теплообменника, работающих под дав-				
	агрессивных сред, если это установлено в сопроводитель-	До ввода в эксплуатацию			
ной документации		после монтажа			
	вия монтажа, обвязки трубопроводами, оснащения кон-	после монтажа			
	ыми приборами и предохранительными устройствами				
	ованиям проектной и технической документации				
	пических испытаний пробным давлением				
Периодическое					
	а) Узлы крепления теплообменника к фундаментной				
	раме:				
	- надежности сопряжения опор теплообменника с несу-	При необходимости, но			
	щими элементами фундаментной рамы;	не реже, чем раз в четыре			
	- полноты затягивания крепежных соединений;	года			
	- надежности стопорения крепежных соединений;				
	- отсутствия загрязнений и следов коррозии.				
	б) Фланцевые разъемы портов подвода и отвода рабочих				
	сред:				
Наружный и	- плотности разъёмного соединения (отсутствия следов	При необходимости, но			
внутренний	подтекания);	не реже, чем раз в четыре			
осмотры	- полноты затягивания крепежных соединений (отсут-	года			
	ствия следов подтекания);	, ,			
	- надежности стопорения крепежных деталей;				
	- отсутствия загрязнений и следов коррозии.				
	в) Пластины теплообменные				
	- состояния пластин;	В случае неисправностей			
	- отсутствия следов коррозии;	по п. 2,3 таблицы 7, но не			
	- отсутствия механических повреждений и загрязнений.	реже чем раз в четыре			
	При необходимости применить контроль методом капиллярной дефектоскопии.	года.			
	пярной дефектоскопии.	Посно компой пор			
		После каждой раз- борки/сборки теплооб-			
		менника (механическая			
Гидравлическое	- отсутствие внешней течи;	чистка, изменение коли-			
испытание пробным	- отсутствие внешней течи;	чества теплообменных			
давлением	- отсутствие падения давления.	пластин, замена теплооб-			
давленном	ото, тотыно надения давления.	менных пластин/прокла-			
		док и т.д.), но не реже,			
		чем раз в четыре года			
Внеочередное		1 1			
Определяется причи-					
нами, вызвавшими		п. 3.3.6			
его проведение					

- 3.2.2.6 Внеочередное техническое освидетельствование теплообменника проводится в случаях, если:
 - а) теплообменник не эксплуатировался более 12 месяцев;
 - б) теплообменник был демонтирован и установлен на новом месте;
- в) произведен ремонт с применением сварки, наплавки, термической обработки (при необходимости) элементов, работающих под давлением, за исключением работ, после проведения которых требуется экспертиза промышленной безопасности.
- 3.2.2.7 При проведении внеочередного освидетельствования в паспорте теплообменника должна быть указана причина, вызвавшая необходимость в таком освидетельствовании.
- 3.2.2.8 Результаты технического освидетельствования с указанием максимальных разрешенных параметров эксплуатации (давление, температура), сроков следующего освидетельствования должны быть записаны в паспорт теплообменника лицами, проводившими техническое освидетельствование. Срок следующего периодического технического освидетельствования не должен превышать срока службы оборудования, установленного изготовителем или заключением экспертизы промышленной безопасности, оформленным по результатам технического диагностирования при продлении срока службы оборудования.
- 3.2.3 Производительность пластинчатого теплообменника и его коррозионная стойкость напрямую зависят от чистоты пластин. Загрязнения, оседающие на пластины в процессе эксплуатации, снижают теплопередающие характеристики и увеличивают гидравлическое сопротивление (падение давления).
- 3.2.4 Загрязнения с пластин можно удалить, как организовав циркуляцию специального моющего вещества в пакете пластин без разборки теплообменника (безразборная очистка), так и с его разборкой и чисткой пластин вручную (механическая очистка).
- 3.2.5 Эксплуатация теплообменника в заполненном состоянии без циркуляции рабочих сред свыше 24 часов не допускается, в противном случае необходимо обеспечить циркуляцию рабочих сред или слить из него рабочие среды. При бездействии теплообменника сроком до 24 часов, если рабочая среда из циркуляционного контура штатной системы не сливается, температура рабочей среды в контуре должна быть не ниже 5 °C.
- 3.2.6 При выводе из эксплуатации теплообменника на срок более чем 6 мес., необходимо слить из него рабочие среды и промыть весь теплообменник. После промывки теплообменника для предохранения прокладок от загрязнения, воздействия ультрафиолета и озона, следует слегка стянуть пакет пластин при помощи стяжных шпилек. Размер пакета пластин (A, см. паспорт) должна быть больше номинального на 10 %. После этого накрыть теплообменник плотной водонепроницаемой тканью.

3.2.7 Разборка теплообменника

- 3.2.7.1 Перед тем, как приступить к разборке теплообменника, необходимо вывести его из эксплуатации (см. подраздел 2.4.2).
 - 3.2.7.2 Снизить давление теплообменника до нуля и охладить его до температуры ниже 40 °C.
- 3.2.7.3 Скорость снижения давления не должна превышать 0.3 МПа (3.0 кгс/см^2) в мин., а скорость изменения температуры не должна превышать $10 \, ^{\circ}$ С в мин.
- 3.2.7.4 Отвернуть соединительные муфты или болты крепления ответных фланцев и отсоединить трубопроводы рабочих сред от портов теплообменника, опорожнить его.
- 3.2.7.5 Отвернуть детали крепления теплообменника к фундаментной раме и демонтировать теплообменник. Все работы по демонтажу теплообменника должны производиться по документации эксплуатирующей организации (Заказчика).
- 3.2.7.6 Осмотреть и очистить поверхности верхней и нижней направляющих. Очистить металлической щеткой резьбовую часть стяжных шпилек, покрыть ее тонким слоем смазки. Измерить и записать величину размера А.
- 3.2.7.7 Поочередно отвернуть гайки стяжных шпилек. Отворачивать каждую гайку за один раз не более чем на два оборота. Ослабить и демонтировать стяжные шпильки. Отодвинуть прижимную плиту. Ослабление стяжных шпилек необходимо производить по диагонали.
- 3.2.7.8 Замаркировать краской (перманентным маркером) теплопередающие пластины одним порядковым номером (1, 2, 3...), начиная от передней плиты теплообменника. Маркировка пластин ударным способом не допускается.

3.2.7.9 Снять подвижную плиту. Отделить осторожно пластины друг от друга, если они склеились между собой, не нарушая при этом положения прокладок. Пластины необходимо пометить так, чтобы установить их при сборке в том же порядке.

3.2.8 Очистка теплообменника

3.2.8.1 Очистку внутренних полостей теплообменника от загрязнений необходимо производить при помощи моющих средств, не повреждая при этом пластин или прокладок. При чистке моющими веществами важно не повредить защитную пассирующую пленку, образующуюся на нержавеющей стали, из которой изготовлены пластины.

ВНИМАНИЕ! ПРИ ОЧИСТКЕ ПЛАСТИН И ДРУГИХ КОМПЛЕКТУЮЩИХ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ ЗАПРЕЩАЕТСЯ ИСПОЛЬЗОВАТЬ В КАЧЕСТВЕ МОЮЩИХ ВЕЩЕСТВ ЖИДКОСТИ, СОДЕРЖАЩИЕ ХЛОР, НАПРИМЕР, ТАКИЕ КАК СОЛЯНАЯ КИСЛОТА (HCl).

3.2.9 Безразборная очистка теплообменника

- 3.2.9.1 Необходимым условием для безразборной очистки является растворимость отложений, образовавшихся на пластинах, и устойчивость материалов, соприкасающихся с моющим раствором к его агрессивному воздействию.
- 3.2.9.2 Для безразборной очистки необходимо использовать систему циркуляции моющего раствора внутри теплообменника.
- 3.2.9.3 Количество циркулирующего моющего раствора должно быть эквивалентно обычному количеству среды, участвующей в теплообмене.
- 3.2.9.4 Очистку можно выполнять и без циркуляции, путем заливки в теплообменник моющего раствора.
 - 3.2.9.5 Процедуру очистки повторять до тех пор, пока все загрязнения не будут удалены.
- 3.2.9.6 Для эффективной очистки необходимо постоянно добавлять в циркуляционную систему свежий моющий раствор, а после очистки теплообменник тщательно промыть чистой водой.

3.2.10 Механическая очистка теплообменника

- 3.2.10.1 Разберите теплообменник в соответствии с приведенными инструкциями.
- 3.2.10.2 Демонтировать с теплопередающих пластин съемные прокладки. Прокладки, закрепленные на пластинах при помощи клея не демонтировать и предохранять от повреждений.

ВНИМАНИЕ! НА ТЕПЛООБМЕННИКАХ С БЕСКЛЕЕВЫМ СПОСОБОМ КРЕПЛЕНИЯ ПРОКЛАДОК ПРИ ПОМОЩИ КЛЕЯ ЗАКРЕПЛЯЕТСЯ ТОЛЬКО ПРОКЛАДКА ПЕРВОЙ ПЛАСТИНЫ.

- 3.2.10.3 После разборки теплообменника каждая пластина очищается в отдельности. Для этого можно использовать оборудование для очистки водой под высоким давлением, снабженное неподвижной или вращающейся щеткой, мягкую щетку, моющую жидкость и воду. При использовании оборудования для мойки водой под высоким давлением, необходимо исключить применение и возможность попадания на моющуюся поверхность пластины песка или других абразивов.
- 3.2.10.4 В тех случаях, когда на пластинах образовался толстый слой отложений или накипи, пластины необходимо демонтировать из рамы, снять прокладки и опустить пластины в ванну с моющим раствором «ЕРП-1». После растворения отложений, пластины промыть чистой водой, просущить места установки прокладок (в случае использования прокладок, крепящихся на пластинах при помощи клея) и установить новые прокладки.
- 3.2.10.5 В конце очистки пластины промыть чистой водой. Поверхность пластины считается чистой, если:
 - отсутствуют следы загрязнений, отложений и коррозии;
- при проведении по поверхности пластины белой салфеткой на ней не остается следов загрязнения.
- 3.2.10.6 Проверить прокладки, закрепленные на пластинах при помощи клея. Отклеившиеся прокладки приклеить клеем 3M Scotch-Weld 10, или 88-Люкс.
- 3.2.10.7 При проведении механической очистки необходимо соблюдать меры безопасности, изложенные в разделе 2.2.

3.2.11 Замена пластин

- 3.2.11.1 Перед установкой в пакет новой пластины необходимо:
- убедиться, что пластина соответствует типоразмеру;
- убедиться, что угловые отверстия выполнены аналогично старой пластине.
- 3.2.11.2 При установке пластин в теплообменник необходимо руководствоваться требованиями п. 4.3.
- 3.2.11.3 В случае обнаружения дефектов пластин, не подлежащих ремонту, допускается демонтаж дефектной пластины с четырьмя угловыми отверстиями без вставки запасной пластины при условии, что соседняя пластина с четырьмя угловыми отверстиями тоже демонтируется.
- 3.2.11.4 После того как убираются две пластины, теплопередающая поверхность теплообменника сокращается по сравнению с первоначальной, при этом увеличивается перепад давления. Допускается увеличивать теплопередающую поверхность теплообменника путем добавления пластин, при условии достаточности длины направляющих.
- 3.2.11.5 Изменение размера А до размера А1, определяющего степень сжатия пакета при демонтаже дефектных пластин рассчитывается по формуле:
 - A1 = A * (S минус n) / S.
- 3.2.11.6 Изменение размера А до размера А1, определяющего степень сжатия пакета при установке дополнительных пластин рассчитывается по формуле:
 - A1 = A * (S плюс n) / S, где:
- A1 размер, определяющий степень сжатия после демонтажа дефектных или установки дополнительных пластин;
- A первоначальный размер, определяющий степень сжатия, указываемый в паспорте теплообменника;
 - S первоначальное число пластин в пакете, указываемое в паспорте теплообменника;
 - п четное количество пластин, которые демонтируются или добавляются.

3.2.12 Замена прокладок

- 3.2.12.1 Перед удалением старых прокладок требуется запомнить и замаркировать их положение относительно профиля пластины.
- 3.2.12.2 Первая пластина после неподвижной плиты, не участвующая в теплообмене, должна иметь прокладку в уплотнительных канавках с обеих сторон. Такая прокладка может вырезаться из двух обычных прокладок. Перед установкой в процессе замены требуется сравнить форму новой и старой прокладки. Прокладка фиксируется на клей.

3.2.13 Замена клеевых прокладок

- 3.2.13.1 Удалить с пластины приклеенные клеем старые прокладки.
- 3.2.13.2 Пластины и уплотнительные канавки очистить от пыли, остатков клея, загрязнений, протереть салфеткой, смоченной в ацетоне техническом ГОСТ 2768 и сушить до полного испарения ацетона.
- 3.2.13.3 Резиновые прокладки перед установкой в уплотнительные канавки пластины протереть салфеткой, смоченной в воде питьевой и просушить.
- 3.2.13.4 Уплотнительные канавки на пластине смазываются тонким слоем клея 3M Scotch-Weld 10, прокладка устанавливается в уплотнительную канавку пластины. Установка прокладок начинается с обоих концов пластины и продолжается вдоль прямой части пластин. После установки прокладок в уплотнительные канавки, пластины необходимо сжать, уложив их одна на другую с поворотом на 180° .

ВНИМАНИЕ! ТЩАТЕЛЬНО СЛЕДИТЕ ЗА ТЕМ, ЧТОБЫ КЛЕЙ ПОСЛЕ УСТАНОВКИ ПРОКЛАДОК НЕ ВЫСТУПАЛ ИЗ УПЛОТНИТЕЛЬНЫХ КАНАВОК ПЛАСТИН.

- 3.2.13.5 Для предотвращения повреждения, операцию по установке прокладок необходимо выполнять на чистой, ровной поверхности, освобожденной от посторонних предметов.
- 3.2.13.6 Установить пластины с прокладками в раму и стянуть при помощи стяжных шпилек до значения, указанного в паспорте на теплообменник, плюс 0,2 мм на каждую пластину.
- 3.2.13.7 Теплообменник с установленным пакетом пластин просушить при температуре $20~^{\circ}$ С в течение 48 часов. При температуре $40~^{\circ}$ С время сушки сокращается до $24~^{\circ}$ С часов.

3.2.13.8 После окончания сушки теплообменника обжать пакет пластин в соответствии с требованиями 3.2.10.

3.2.14 Замена бесклеевых прокладок

- 3.2.14.1 Бесклеевые прокладки имеют специальные фиксаторы, которые защелкиваются на пластине.
- 3.2.14.2 Удалить с пластин старые прокладки. Перед установкой новых прокладок убедиться в том, что в прокладочных канавках нет остатков старой резины, особенно в местах для фиксаторов.
- 3.2.14.3 Пластины и уплотнительные канавки очистить от загрязнений и протереть салфеткой, смоченной в ацетоне техническом ГОСТ 2768 и сушить до полного испарения ацетона.
- 3.2.14.4 Резиновые прокладки перед установкой в уплотнительные канавки пластины протереть салфеткой, смоченной в воде питьевой и просушить.
- 3.2.14.5 Новые прокладки устанавливаются без использования каких-либо инструментов. Изготовитель оставляет право применять при необходимости дополнительную точечную клеевую фиксацию резиновых уплотнений в каналах пластин.

3.2.15 Сборка теплообменника

3.2.15.1 Сборку теплообменника после механической очистки осуществлять в последовательности, обратной разборке.

ВНИМАНИЕ! ПОСЛЕ ОЧИСТКИ ПЛАСТИН И ДРУГОГО ВИДА РЕМОНТА, ПЛАСТИНЫ ДОЛЖНЫ БЫТЬ УСТАНОВЛЕНЫ МЕЖДУ НАПРАВЛЯЮЩИМИ В ТОМ ЖЕ ПОРЯДКЕ, ЧТО И ДО РАЗБОРКИ.

ВНИМАНИЕ! ПРЕДВАРИТЕЛЬНАЯ СТЯЖКА ТЕПЛООБМЕННИКА ПРОИЗВОДИТСЯ УДЛИНЕННЫМИ ВЕРХНИМИ И НИЖНИМИ ШПИЛЬКАМИ, С ПОСЛЕДУЮЩЕЙ РАВНОМЕРНОЙ ЗАТЯЖКОЙ ВСЕХ ШПИЛЕК ДО РАЗМЕРА А.

- 3.2.15.2 Пластины установить в том же порядке, в каком они были до разборки, учитывая их маркировку. Для обеспечения правильного распределения потоков рабочих сред, пластины должны быть повернуты на 180° по отношению друг к другу.
- 3.2.15.3 После сборки внешняя сторона пакета пластин образует рисунок В.2 приложение В. При неправильной сборке пластин в пакет (одна или несколько пластин не повернуты на 180° по отношению друг к другу), их края образуют рисунок В.3 приложение В.
- 3.2.15.4 Придвиньте подвижную плиту к пакету пластин, вставьте по бокам длинные стяжные шпильки с шайбами и гайками, равномерно затяните шпильки на противоположных сторонах и по диагонали (1-2 и 3-4) рисунок В.4 приложение В, следя за тем, чтобы торцевые поверхности пластин были параллельны.
- 3.2.15.5~ При достижении размера «А» произвести установку коротких стяжных шпилек с шайбами и гайками, затянуть их до размера «А».
- 3.2.15.6 Размер «А», определяющий степень сжатия пакета пластин, указан в паспорте на теплообменник. Размер «А» необходимо измерять между внутренними сторонами неподвижной и прижимной плит в местах установки стяжных шпилек в теплообменнике с обеих сторон. Во время всего процесса сжатия необходимо следить за тем, чтобы между неподвижной и прижимной плитами соблюдалась параллельность. Замер размера «А» производить с помощью мерительного инструмента прошедшего метрологическую оценку, рулетки ГОСТ 7502 класс точности не ниже 2, в случае использования рулеток без класса точности считать погрешность измерений в 1 мм.
- 3.2.15.7 Минимальное допустимое отклонение размера «А» (при измерениях) составляет ± 3 % от толщины пакета пластин. Если толщина пакета пластин составляет 100 мм, то допустимое отклонение соответственно составляет 3 мм.
- 3.2.15.8 После сборки теплообменник необходимо подвергнуть гидравлическим испытаниям давлением (см. подраздел 2.4.1).

3.3 Гарантийное и послегарантийное обслуживание, сведения о рекламациях

3.3.1 Предприятие-изготовитель устанавливает на теплообменник срок гарантии, продолжительность которого указывается в паспорте. Гарантия подразумевает ремонт или замену как изделия

в целом, так и его дефектных комплектующих в течение гарантийного срока при обязательном соблюдении со стороны Заказчика условий транспортирования, хранения, монтажа и эксплуатации, изложенных в эксплуатационной документации прилагаемых к теплообменнику.

- 3.3.2 Гарантия распространяется на дефекты производства теплообменника и исходного материала.
- 3.3.3 Предприятие-изготовитель не несет ответственности по гарантийным обязательствам в случае:
- наличия механических или химических повреждений как наружных, так и внутренних поверхностей;
- неисправностей, возникших вследствие неправильных транспортировки, хранения, монтажа, эксплуатации (гидроудары и термоудары), отсутствия надлежащей защиты (фильтры, клапаны предохранительные и пр.), а также ремонта, разборки или изменения конструкции в течение гарантийного срока (отсутствие или повреждение пломбы Производителя);
- при эксплуатации и/или обслуживании теплообменника с использованием сред, отличных от тех, что указаны в паспорте;
- при эксплуатации и/или обслуживании теплообменника с использованием сред, температура и давление которых превышают расчетные значения, указанные в паспорте на теплообменник;
- при эксплуатации теплообменника с использованием сред, которые приводят к образованию на поверхностях теплообменных пластин накипи или других отложений, препятствующих нормальной работе теплообменника;
- неисправностей, возникших из-за наличия в теплообменнике отложений или загрязнений, попадание посторонних предметов (в том числе транспортных заглушек);
- при эксплуатации теплообменника с использованием сред, которые содержат твердые включения, приводящие к засорению каналов и/или износу пластин;
- при нарушении комплектности и замене составных частей без разрешения предприятия-изготовителя;
- со следами коррозионного и/или эрозионного износа теплообменных поверхностей теплообменника;
- в случае повреждений теплообменника от действий третьих лиц; действий непреодолимой силы, а также вследствие прочих обстоятельств, не зависящих от изготовителя (поставщика).
 - при использовании теплообменника не по назначению;
 - при невыполнении требований руководства по эксплуатации;
- 3.3.4 При обнаружении дефекта или несоответствия расчетных параметров фактическим данным, Заказчик должен незамедлительно сообщить об этом изготовителю (поставщику) или официальному сервисному партнеру предприятия-изготовителя (поставщика), направив ему технически обоснованный акт рекламации (бланк акта на сайте www.teplo-sila.com, в разделе "Сервис"), составленный по форме, содержащей сведенья п. 3.3.5, не позднее 5 (пяти) дней с даты обнаружения дефекта (несоответствия) или иной даты, указанной в договоре поставки. Акт следует направить по E-mail: service@teplo-sila.com.
- 3.3.5 Акт рекламации принимается к рассмотрению при условии указания в нем: времени и места составления акта; полного адреса получателя теплообменника; типа теплообменника; его заводского номера; даты получения; даты монтажа (пуска в эксплуатацию); условий эксплуатации (температур рабочих сред на входе и выходе контуров теплообменника, расходы по греющей и нагреваемой средам, давления и перепады давления по обеим сторонам теплообменника); наработки теплообменника (в часах) с момента пуска; подробного описания возникших неисправностей и дефектов с указанием обстоятельств, при которых они обнаружены; сведений о проведенных ремонтах теплообменника (если таковые были); подписей, Ф.И.О. и должностей лиц, составивших акт, печати организации. Заполнение заявки на сервисное обслуживание и ее представление обязательно.
- 3.3.6 Гарантийный ремонт теплообменника производится исключительно официальными сервисными партнерами изготовителя (поставщика), либо самим предприятием-изготовителем. Актуальный список официальных сервисных партнеров можно уточнить у предприятия-изготовителя или найти на сайте **www.teplo-sila.com**, в разделе «Контакты».
- 3.3.7 Послегарантийное обслуживание теплообменника может производиться как владельцем теплообменника, так и сторонней организацией по усмотрению владельца, в т.ч. официальными

сервисными партнерами предприятия-изготовителя, с соблюдением условий раздела 3 настоящего руководства по эксплуатации.

- 3.3.8 Официальные сервисные партнеры изготовителя имеют права и полномочия на производство следующих работ и оказание услуг, связанных с сервисным обслуживанием теплообменников:
 - техническое консультирование;
 - шефмонтаж и пуско-наладка оборудования;
 - техническое обслуживание оборудования (в т.ч. гарантийное) и его ремонт;
- поставка оригинальных запасных частей (комплектующих, пластин и прокладок) к оборудованию.

4 Хранение

- **4.1** Хранение теплообменников в упаковке предприятия-изготовителя на складах поставщика (потребителя) в условиях по группе 6 (ОЖ2), запасных частей по группе 3 (Ж3), запасных частей, имеющих в составе резинотехнические изделия по группе 1 (Л) ГОСТ 15150 с обязательным соблюдением п.6.2 ГОСТ ISO 2230.
- **4.2** Гарантийный срок хранения в заводской упаковке в закрытом неотапливаемом помещении, под навесом или на открытой площадке 12 месяцев.
 - 4.3 Время транспортирования включается в общий срок хранения.
- **4.4** После окончания гарантийного срока хранения в соответствии с п. 4.2 следует выполнить консервацию теплообменника.
- **4.5** При выводе из эксплуатации теплообменника на срок более чем 6 мес., слить из него рабочие среды, разделить пластины, промыть пакет пластин и выполнить мероприятия, предусмотренные 3.2.6.
- **4.6** При хранении нового (не бывшего в эксплуатации) теплообменника свыше 6 мес. в закрытом неотапливаемом помещении, под навесом или на открытой площадке следует произвести ослабление стяжных шпилек теплообменника. Степень сжатия (размер сжатия) пакета пластин должен быть больше размера А на 10 %. Размер стяжки пакета пластин А, указан в паспорте. После обжатия пакета пластин, при отсутствии защитного экрана, накрыть теплообменник плотной водонепроницаемой тканью.

ВНИМАНИЕ! НЕ ДОПУСКАЕТСЯ ПЕРЕМЕЩЕНИЕ ТЕПЛООБМЕННИКА ДО ПРИВЕДЕНИЯ РАЗМЕРА СЖАТИЯ ПАКЕТА ПЛАСТИН ДО РАЗМЕРА, УКАЗАННОГО В ПАСПОРТЕ.

- **4.7** Ввод теплообменника в работу после длительного бездействия (более 6 мес.) производить согласно разделу 2.
- **4.8** Не допускается хранить теплообменники и резиновые уплотнения в одном помещении с веществами, вызывающими коррозию материалов, из которых он изготовлен, с веществами, разрушающими резину: горюче-смазочными материалами, кислотами, щелочами и т. д.
- **4.9** Изделия рекомендуется хранить защищенными от воздействия прямых солнечных лучей и вдали от источников тепла, таких как бойлеры, радиаторы. При хранении защищают изделия от всех источников ионизирующего излучения, вызывающего ухудшение продукции.
- **4.10** При длительном хранении теплообменника на территории эксплуатирующего предприятия контроль за соблюдением правил и условий хранения изделий выполняется под наблюдением обслуживающих служб эксплуатирующего предприятия (Заказчика).
- **4.11** При хранении теплообменника, прошедшего ремонтно-восстановительные работы на эксплуатирующем предприятии, в качестве изолирующего материала использовать полиэтиленовую пленку ГОСТ 10354-82 или другой водонепроницаемый материал.

5 Транспортирование

- **5.1** Теплообменники транспортируются в сборе, либо отдельными сборочными единицами и деталями, объединенными в транспортные блоки.
- **5.2** Транспортирование теплообменника (транспортного блока), упакованного в соответствии с требованиями п.1.6 осуществляется всеми видами крытых транспортных средств. При транспортировании должны соблюдаться правила перевозки и крепления грузов, действующие на соответствующем виде транспорта. Размещение и крепление теплообменников в транспортных средствах

должно обеспечивать его устойчивое положение и не допускать перемещения во время транспортирования.

- **5.3** Условия транспортирования должны соответствовать в части воздействия климатических факторов группе 5 (ОЖ4) по ГОСТ 15150, в части воздействия механических факторов группе С по ГОСТ 23170.
- **5.4** Способы погрузки, разгрузки, а также способы транспортирования и условия хранения должны обеспечивать сохранность теплообменника от механических повреждений. Запрещено кантовать теплообменник (во избежание смещения стяжных плит, и, как следствие, нарушение герметичности изделий).
- **5.5** В случае транспортировки и хранения при температуре ниже 0 °C необходимо слить из теплообменника всю жидкость.
- **5.6** В случае хранения или транспортирования теплообменника и запасных частей при температуре ниже 0 °C, следует выдержать их до монтажа и эксплуатации при температуре не ниже +15 °C не менее 24 ч.

6 Утилизация

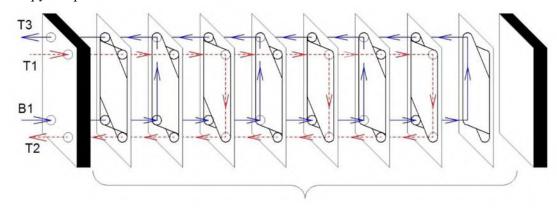
- **6.1** Теплообменники перед отправкой на утилизацию (на вторичную переработку) необходимо освободить от рабочих сред по технологии эксплуатирующего предприятия, обеспечивающей безопасное ведение работ. Произвести разборку теплообменника и разделку деталей с сортировкой металла по типам и маркам.
- **6.2** Утилизация теплообменника, производится в сроки и способом, принятым на эксплуатирующем предприятии, в соответствии с требованиями ГОСТ 30167, а также законами, нормами, актами, правилами, распоряжениями и пр.

ПРИЛОЖЕНИЕ А

(рекомендуемое)

Компоновка пластин и прокладок

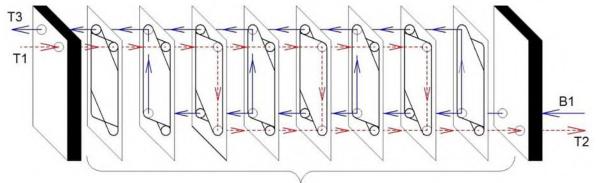
Условные обозначения портов входных и выходных отверстий теплообменников:


Т1 – вход греющей среды; В1 – вход нагреваемой среды; Т2 – выход греющей среды; Т3 – выход нагреваемой среды;

Т4 – вход циркуляционной воды из ГВС Т22 – вход обратной воды из отопления.

Теплообменники ЕТ в стандартном исполнении:

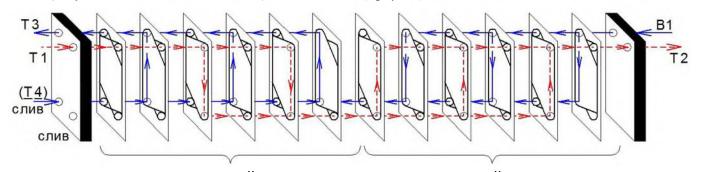
Одноходовой теплообменник


а) все патрубки расположены на неподвижной плите

один ход

Рисунок А.1 - Компоновка пластин одноходового теплообменника с расположением патрубков на неподвижной плите

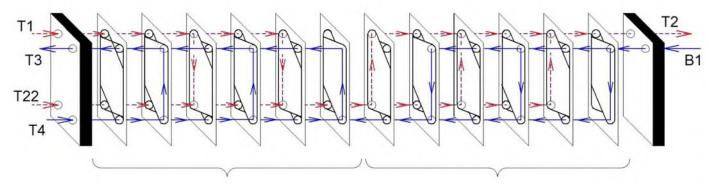
б) патрубки вход/выход расположены по разные стороны теплообменника



один ход

Рисунок А.2 - Компоновка пластин одноходового теплообменника с расположением патрубков с разных сторон теплообменника

Двухходовой теплообменник


а) двухходовой теплообменник (в том числе с циркуляцией)

первый ход второй ход Рисунок А.3 - Компоновка пластин двухходового теплообменника (с циркуляционной линией)

б) двухходовой теплообменник для двухступенчатой смешанной схемы горячего водоснабжения

ІІ ступень, первый ход

I ступень, второй ход

Рисунок А.4 - Компоновка пластин двухходового теплообменника для двухступенчатой смешанной схемы горячего водоснабжения

Трехходовой теплообменник

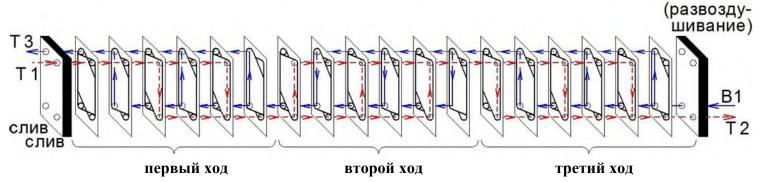


Рисунок А.5 - Компоновка пластин трехходового теплообменника

ВНИМАНИЕ! ДОПУСКАЕТСЯ ГРЕЮЩИЙ И НАГРЕВАЕМЫЙ КОНТУР МЕНЯТЬ МЕСТАМИ. ТАК ЖЕ ПО ЗАПРОСУ ЗАКАЗЧИКА И, ПО СОГЛАСОВАНИЮ С ПРОИЗВОДИТЕЛЕМ, ВОЗМОЖНО И ИНОЕ РАСПОЛОЖЕНИЕ ВХОДНЫХ И ВЫХОДНЫХ ОТВЕРСТИЙ ТЕПЛООБМЕННИКА

ПРИЛОЖЕНИЕ Б (обязательное)

Схемы строповки теплообменника

Внимание! Никогда не поднимайте теплообменник за порты!

Обязательно: Использовать проушины. Приподнимать за верхнюю часть неподвижной плиты. Крепить стропы за стяжные шпильки рядом с неподвижной плитой.

Не допускается: Приподнимать теплообменник за места подключения труб. Приподнимать теплообменник со стороны прижимной плиты. Приподнимать теплообменник с креплением стропы рядом с прижимной плитой.

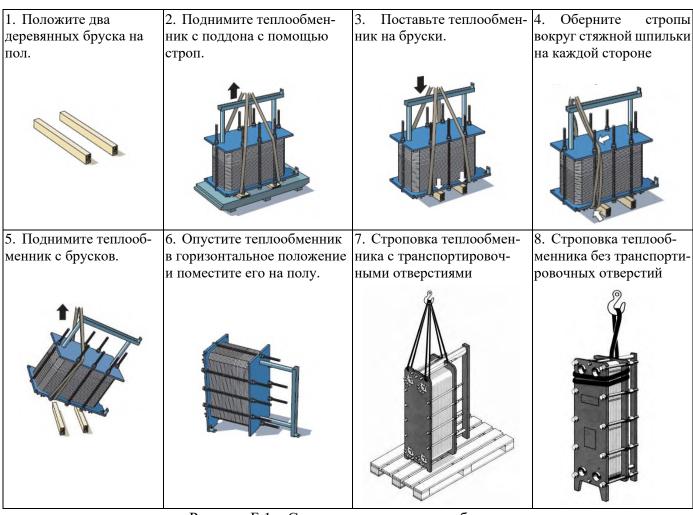


Рисунок Б.1 – Схемы строповки теплообменника

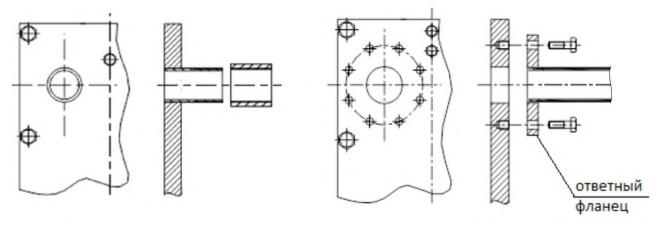


Рисунок Б.2 – Схемы подключения трубопроводов к теплообменнику

ПРИЛОЖЕНИЕ В (справочное)

Схема обвязки теплообменника

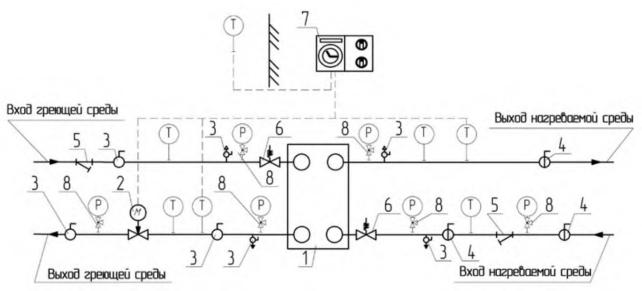


Рисунок В.1 – Справочная схема обвязки теплообменника жидкость – жидкость

- 1 Теплообменник;
- 2 Клапан регулирующий проходной;
- 3 Кран шаровой;
- 4 Затвор дисковый;
- 5Φ ильтр;

- 6 Клапан предохранительный;
- 7 Контроллер;
- 8 Кран трехходовой;
- P Манометр;
- Т Термометр.

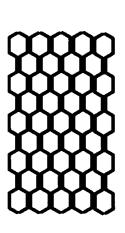


Рисунок В.2 – Вид на пакет пластин при правильной сборке

Рисунок В.3 – Вид на пакет пластин при неправильной сборке

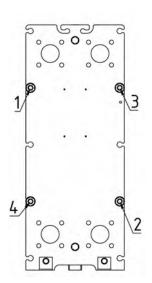


Рисунок В.4 – Схема установки и стягивания длинных стяжных шпилек

ПРИЛОЖЕНИЕ Г

(рекомендуемое)

Моменты затяжек крепежных деталей теплообменников

Таблина Г.1

Крепежный элемент	Момент на ключе (H·м) в зависимости от класса прочности крепежных элементов		
	5.8	8.8	
M16	85-140	135-195	
M20	170-270	270-390	

Примечания

- 1. Допускается выполнять затяжку в диапазоне $\pm 10 \%$ от указанных значений.
- 2. Данные рекомендации не распространяются на стяжные шпильки.

Порядок затяжки фланцевого крепежа

Затяжку фланцевого крепежа производить в последовательности «крест-накрест» (Рисунок Γ .1), используя минимум три прохода затяжки:

- проход 1: Крутящий момент не более 30% от конечного значения крутящего момента, рекомендованные значения затяжки приведены в таблице Γ .1. Убедитесь, что прокладка сжимается равномерно.
 - проход 2: Крутящий момент не более 60% от конечного значения крутящего момента.
 - проход 3: Крутящий момент до конечного значения крутящего момента (100%).

После завершения трех основных проходов крутящего момента необходимо повторить затягивание гаек, по крайней мере, один раз, используя окончательный крутящий момент в режиме «крест-накрест».

Для затяжки крепежа должны применяться гаечные ключи с нормальной длиной рукоятки и динамометрические ключи. Применение различных рычагов в целях удлинения плеча при затяжке крепежа ключами не допускается.

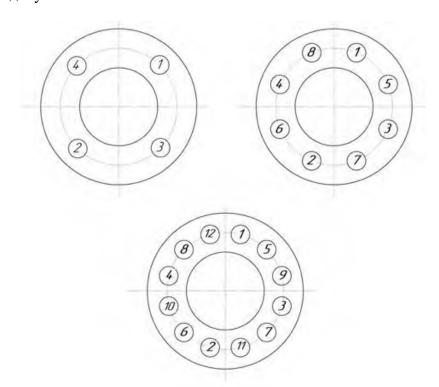


Рисунок $\Gamma.1$ — Схемы последовательности затяжек фланцевого крепежа для количества крепежных элементов 4, 8, 12 шт.

TENAOCNA A

Занимается производством и реализацией следующей продукции:

РЕГУЛЯТОРЫ ПЕРЕПАДА ДАВЛЕНИЯ И ДАВЛЕНИЯ «ПОСЛЕ СЕБЯ» (в том числе в высокотемпературном исполнении) ПРЯМОГО ДЕЙСТВИЯ

RDT, RDT-P, RDT-T

ТЕПЛООБМЕННИКИ ПЛАСТИНЧАТЫЕ РАЗБОРНЫЕ

ΕT

РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ «ДО СЕБЯ» И «ПЕРЕПУСКА»

RDT-S, RDT-B

БЛОЧНЫЕ ТЕПЛОВЫЕ ПУНКТЫ

БТП

КЛАПАНЫ ПРОХОДНЫЕ СЕДЕЛЬНЫ РЕГУЛИРУЮЩИЕ (в том числе в высокотемпературном исполнении)

TRV, TRV-T

КЛАПАНЫ ТРЕХХОДОВЫЕ РЕГУЛИРУЮЩИЕ СМЕСИТЕЛЬНЫЕ/ РАЗДЕЛИТЕЛЬНЫЕ

TRV-3

КЛАПАНЫ КОМБИНИРОВАННЫЕ (с автоматическим

ограничением расхода)

TRV-C

TSL

ШКАФЫ УПРАВЛЕНИЯ

ТШУ

ЭЛЕКТРОПРИВОДЫ ПРЯМОХОДНЫЕ (с трехпозиционным и аналоговым(A) управлением: с функцией безопасности (R); с функцией регулирования температуры (T, TR))

КИНАЛВАПТИ ИЛУДОМ -ОПОНМ ЭИНАЛАНОИЈУНУФ

TTR

ООО "Завод Теплосила" Логойский тракт, 22а, корпус 2, офис 702, 220090, г. Минск, Республика Беларусь tel.fax. (+375-17) 396-89-16, 396-89-18 e-mail: teplo@teplo-sila.by

www.teplo-sila.com

Ред.21.07.2025